
133

7
Products: Ending with
the Beginning

“You can’t have everything. Where would you put it?”

—Steven Wright

Your workshop products include inputs and outputs. The outputs include re-
quirements and supplemental deliverables such as statements of issues and

follow-up actions. The inputs are any materials that jump-start workshop activ-
ities and prepare participants: posters, templates, documents, workshop activity
instructions, draft or predecessor requirements models, and the results of partic-
ipant pre-work (see Figure 7-1).

Prepare
Workshop

Room

Open
Workshop

Close
Workshop

Review
Evaluations

Complete
Post-Workshop

Assignments

Assess
Business

Value

Adjust
Facilitation

Process

Plan Next
Steps and
Workshop

Publish and
Review

Workshop
Documentation

Conduct
Workshop

CHECK

DO

ACT

REQUIREMENTS

WORKSHOP

PROCESS

PLA
N

Define
Workshop

Purpose and
Participants

Orient
Participants

Prepare
Inputs

Define
Principles,

Products, Place,
Process

I discuss output products first because they are the basis for deciding which in-
puts you should use for your workshop.

OUTPUT PRODUCTS

Your primary output products are the requirements models created by the partic-
ipants. (Later in this chapter I discuss intangible workshop products, such as de-
cisions about the state of the requirements.) Along with your core requirements
deliverables, you’ll create supplemental deliverables, such as posters or docu-
ments that list actions or next steps, issues, and decisions.

In some cases, you may want to create supplemental workshop products to ac-
celerate follow-up activities. In one workshop, the participants created a commu-

134 Part Two � Requirements Workshop Framework

Requirements
Workshops

Project
Activity or
Workshop

Requirements
Models

Revised
Glossary

Decisions

Issues

Actions, Next
Steps

Glossary

Pre-work
Results

Workshop Aids
(Templates,

Forms, Posters)

Workshop
Agenda

Draft
Requirements

Models

Existing
System and

Project
Documentation

FIGURE 7-1 Workshop Inputs and Outputs

nication plan for organizations to be affected by the software. In another work-
shop, the participants identified risks and then created a risk mitigation plan and
a post-workshop implementation plan. As part of an activity to jump-start their
requirements modeling work, another group created a set of posters depicting a
vision of what work would be like after the system was in place.

Although this book focuses on the core deliverables—the requirements models—
you should consider how supplemental deliverables can dovetail with project ac-
tivities and help the team to communicate effectively. Creating visually rich
supplemental deliverables is fast and efficient.

Making Deliverables Visually Rich

To add visual value to deliverables, either the facilitator or the participants can use
a variety of visual tools in addition to the diagram-oriented requirements models.
Table 7-1 shows some formats for framing information and ideas graphically.

Chapter 7 � Products: Ending with the Beginning 135

TABLE 7-1 Visual Deliverables

Visual Product Uses Limitations

Poster Display visions, draw themes or Describes single point or concept
concepts, show agenda

List Brainstorm steps, define issues Hard to compare listed items
and expectations, identify parking
lot items, name next steps

Clusters, affinity groups Group related items, find themes, Doesn’t show dynamics; categories
analyze options, associate items may be unclear

Arrows, flows Cause and effect, sequence, Implies sequence that could be
logical progression incorrect

Grids, matrices Define missing elements, clarify Can compare only a few items at a time
choices, compare choices

Drawings Visions, stories, road maps, Fear of not being skilled enough to
history, plans, business concepts draw

Mind map Ideas, categories, text and image Complex to read
groups, hierarchies

Circles, wheels, Unifying concepts, unstructured Doesn’t show details or sequence
mandalas (circles relationships, layers of
symbolizing unity) relationships

Note that a mind map is an unstructured diagram that shows groupings of ideas
and concepts associated with a central theme or topic (Buzan, 1989). A mind
map starts with a central image or idea, which forms a focus for both eye and
brain. It then branches out organically, with each branch representing a group-
ing or category.

The requirements models created by participants are sources for other project ac-
tivities (such as design, testing, and coding) and for additional workshops (if
you decide to produce requirements iteratively in a series of workshops). For ex-
ample, outputs such as detailed use cases, business rules, and sketches of
screens would be inputs to design and coding. You can use high-level require-
ments models—such as context diagrams, event tables, stakeholder classes, and
use cases produced in a workshop that follows the horizontal, or “width first,”
workshop strategy (see Chapter 10)—as inputs to another workshop that adds
more depth to those models.

To determine which requirements models to deliver, you need to do the following:

� Select model views that are aligned with the business problem domain.

� Use multiple models to increase the quality of your requirements.

� Mix text models with diagrammatic models to increase the speed of re-
quirements definition and promote mutual learning.

� Pick multiple views and focuses (see “Model Focus” in Chapter 2) to en-
hance the quality of your requirements.

� Define the appropriate level of detail for each selected model.

� Iteratively deliver the requirements.

� Prioritize the requirements deliverables.

� Decide whether you should partition requirements across multiple work-
shops.

� Clarify your doneness tests for delivering “good enough” requirements in
the workshop.

The following subsections explore these topics.

Select Models Aligned with the
Business Problem

Model views—behavior, structural, dynamic, and control—provide differing per-
spectives of user requirements (see “Model Views” in Chapter 2). Even though

136 Part Two � Requirements Workshop Framework

each business problem is unique, the generic set of heuristics presented in
Table 7-2 illustrates how the business domain influences the types of require-
ments models that most strongly express user requirements.

This table is intended to be representative, not inclusive. No one view can ex-
press user requirements completely, so it’s important to draw from several views.
For example, if users are handling the ordering task, behavior models are useful.

Chapter 7 � Products: Ending with the Beginning 137

TABLE 7-2 Heuristics for Selecting Requirements Models

Model View Sample Domains Suggested Models

Behavior Operations, administration, inventory management, Actor map and table
payroll, hiring, order processing, billing, accounting Context diagram

Domain model
Event table
Glossary
Process map
Prototype
Scenarios
Use cases
Use case map

Structural Data query and analysis, data extraction and reporting, Business policies
customer relationship management Business rules

Context diagram
Domain model
Glossary
Prototype
Scenarios

Dynamics Workflow problems such as document management, Event table
materials management, procurement, logistics, Glossary
configuration management, imaging, loan management, Process map
credit application management, demand management, Prototype
contract negotiation Scenarios

Statechart diagrams
Use case map

Control Logistics, claim adjudication, mortgage loan underwriting, Business policies
financial risk, fraud detection, product configuration, Business rules
power usage, clinical diagnosis, credit checking Decision table/decision tree

Event table
Glossary
Scenarios

At the same time, they’re interacting with business concepts and domains such
as orders, cancellations, and customers, which are best captured in structural
models. As you can see from the table, a glossary should always be part of your
requirements deliverables; in fact, a draft glossary should always be an input
product (see “Draft Models” later in this chapter).

As you learn more about the models and use them in workshops, you’ll begin to
recognize which ones are more useful for the business problem you’re trying to
solve.

One project team asked me to review its requirements workshop plan. The busi-
ness problem was to create a flexible hierarchy of salespeople and commission
schemes to be used globally. The group’s plan called for using use cases almost
exclusively. I asked them a few questions, such as, “Who will directly interact
with the system?” “How frequently will they interact with it?” “What kinds of
decisions do you want the system to make?” “What information does the system
use?” Their answers told me that little human interaction was needed and that
the core characteristic of their business problem was to establish and manage
commissions, salespeople, and zones (global groups). The problem was best ex-
pressed not with behavioral models but rather with structural and control mod-
els. Consequently, we refocused the model orientation from use cases to a data
model, business policies, and business rules.

Use Multiple Models

No single user requirements model can fully express the functional requirements
for your project. A solution is to use multiple models (see the Multi-Model col-
laboration pattern in the Appendix).

Delivering multiple models increases the comprehensiveness of your require-
ments because each model reveals aspects of another. In addition, you can use
one model to test the correctness of another. (Chapter 9 describes how to weave
testing into the workshop flow.) This testing is aided with the use of a list of
model quality assurance (QA) questions devised before the workshop (see “QA
Checklist “ later in this chapter). Possible questions include the following:

� For each event in our event table, is there at least one associated use case?

� Which use case would handle this scenario?

� For each use case step, have all the business rules been defined?

� What data is needed to support this business rule?

138 Part Two � Requirements Workshop Framework

The specific questions depend on which models you deliver and their degrees of
detail, but you can see how one model acts to trigger elements of another model.
As illustrated in Figure 7-2, using multiple models allows you thread one model
to another within a single workshop.

A structural model (such a context diagram or the glossary) relates to a dynamic
model (such as the event table); a behavioral model (such as a process map) pro-
vides clues for a control model (such as business policies). Figure 7-2 also illus-
trates the concept of “chunking” the workshop deliverables into iterations (see
“Iteratively Delivering Requirements” later in this chapter).

You can arrange the sequence of your models differently, depending on what you
have as a starting point (see “Draft Models” later in this chapter). An example is
presented later of a variety of sequences for arriving at business rules.

Mix Text and Diagrammatic Models

Plan for participants to deliver a combination of both text and diagrammatic re-
quirements models. Weave both styles of products into your process design (see
Chapter 9). Text models are more precise and contribute to accuracy; diagram-
matic models are fast to create and understand, something that promotes overall
speed in the process. The two styles also work well with regard to our two-sided
brains, with the right side being more adept at dealing with things that are vi-
sual and random and the left side being stronger at linear and analytical tasks.

To put it a different way, a picture may be worth a thousand words, but the ques-
tion is, Which thousand, and what do you mean by them? You need words to an-
swer that.

Chapter 7 � Products: Ending with the Beginning 139

Structure

Behavior

Dynamics

Control

Structure

Behavior

Dynamics

Control

FIGURE 7-2 Threading Multiple Models Through a Workshop

Consider mixing text with diagrams for each view you deliver. For example:

� Use case text and a use case map

� An actor table and an actor map

� A glossary definition and a data model

Some models are strictly text-based and require visual models in order to elicit
them. Business rules and business policies are good examples. You won’t get too
far asking business people, “What business rules do you need?” Instead, you
need visual models that will call up the business rules. One way to overcome this
problem is to represent business rules using a decision table or decision tree.
Another way is to start harvesting business rules using other models. The
BestClaims case study in Chapter 11 provides an example of using a visual model
(a statechart diagram) to drive the specification of business rules.

Mix Focuses and Views

Draw from various requirements model focuses (who, what, when, where, why,
and how) as well as views. Here’s a typical combination:

� Use cases are a behavior view focused on how work gets done.

� An actor map is also a behavior view, but it focuses on who does the work.

140 Part Two � Requirements Workshop Framework

Models for Harvesting Business Rules

You can use all or part of a model to thread to another model. For example, a single
step of a use case gives you a thread to the data attributes needed by a data model
and also to the business rules that must be enforced within that step. To arrive at
business rules, you can use a variety of sequences, including the following:

� Use case → events → business policies → business rules

� Use cases → actors → domain model (class model or data entities) → business
rules

� Actor → decisions → business rules

� Actors → use cases → domain model → business rules

� Events → domain model → business rules

� Events → use cases → business rules

� Events → domain model → life cycles → business rules

� Domain model → events → life cycles → business rules

� A data model or class model is a structural view focused on what informa-
tion is needed.

� Business rules are a control view focused on why—the decisions that soft-
ware needs to make.

Eliciting a combination of models with different focuses helps you to detect re-
quirements errors. In one of my workshops, for example, the use cases that were
created made the customer realize that at least 20 business rules needed to be
defined more precisely before the requirements could be closed. The model view
can trigger creation of additional models that provide more focuses. For example,
if you choose a behavioral view of your requirements (say, use cases), you can
use those use cases to harvest related models.

Define the Level of Detail

Decide how precise each requirements deliverable should be (see Table 2-4 in
Chapter 2).

Scope-level models are particularly important when there’s a high risk of scope
creep or conflict among users about requirements, or when the requirements
aren’t precise enough to support the start of design work. In that case, if users and
developers expect to make the transition to design at the end of a workshop that
delivers that level of detail, you’ll have many unhappy project team members.

A useful strategy for moving from scope-level or high-level requirements down to
detailed-level requirements is to use iterations. This involves working together to
deliver a set of models at roughly the same level of precision, checking their qual-
ity, and then moving down to the next level of detail. This approach is a top-down
horizontal strategy (see “Building a Horizontal Strategy: The Top-Down Approach”
in Chapter 10). Iterating in a top-down manner can accelerate the group’s mutual
understanding of the requirements and reduce rework within the workshop.

But you may not always want to elicit your requirements models in that top-
down order. If your project has a well-defined scope, the team should be ready to
jump into high-level requirements. In some cases (particularly if you’re replacing
an existing system), you’ll start at a lower level of detail, with prototype screens
and use case steps. At other times, you’ll iterate among the levels in a zigzag
strategy (see “The Zigzag Strategy” in Chapter 10).

Each project is unique. To decide the best way to elicit user requirements in
workshops, you’ll need to consider factors such as team size, location, degree of

Chapter 7 � Products: Ending with the Beginning 141

customer and user involvement, past history with software development, exist-
ing documentation and software, and team modeling experience.

Iteratively Delivering Requirements

As you consider each requirements model you want to deliver, begin to partition
the model into its component parts. For example, divide a detailed use case into
its name, header information (such as the triggering event, event response, and
initiating actor), and use case steps. Next, group elements from your various
models at about the same level of detail.

Figure 7-3 shows how a use case and its related requirements can be grouped in
an iterative fashion.

Although this example shows four iterations, you can use two or three iterations.
This example moves from the high level to the detailed level, following what I call
the vertical, how-first strategy (see Chapter 10), in which you drill down within
one focus. Note that if you choose this strategy, time will constrain how many
use cases (and related requirements) you can deliver.

142 Part Two � Requirements Workshop Framework

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Stepwise or
Conversational

Description

Use Case
Map

Use Case
Header and

Brief
Description

Use Case
Name

Initiating
Actors

Triggering
Event

Resulting Event
Response

Locations
of Actors

Business
Policies

Required
Information
Domains

Business
Scenarios

Process
Map

Use Case
Packages

Project Releases

Steps and
Actions

Business
Rules

Data Domains,
Attributes, and
Associations

User Interface
Map or Prototype

FIGURE 7-3 Iteratively Delivering Requirements in a Workshop

In iteration 1, participants begin with a named use case; they then define the ini-
tiating actor, the triggering event, and the event response. In iteration 2, using
the prior set of requirements, participants complete the use case header using a
use case template (see “Templates” later in this chapter). They do this by writing
a one-paragraph description of the use case, adding the locations of the actors,
listing the associated business policies, and modeling the high-level domain
model (class model or data entities).

In iteration 3, participants create a use case map to visually lay out the prede-
cessor-successor relationships among the use cases. (Creating a process map
puts the use cases in the context of the workflow, giving the team the big pic-
ture of the set of requirements. This map also allows the users to understand
how the use cases can fit into their workflow. This work is accelerated if a
process map has been created before the workshop.) Participants logically par-
tition use cases into packages, which in turn they’ll use to define releases or in-
crements for delivery.

In iteration 4, the participants add detailed use case steps, define business rules
for each step, list data attributes needed by the steps and their rules, and sketch
prototypes for each use case.

At the end of each iteration—which should take one to three hours, depending
on the number of use cases—participants should test the quality of the models
they’ve delivered (see “Define Doneness Tests” later in this chapter) in order to
reach closure on that set of requirements before moving on to another set.

Using a “divide and conquer” approach helps you to avoid workshop scope
creep—getting off-track during the workshop by moving up and down to differ-
ent levels of detail. It also gives you a basis for ordering group activities. You also
save time by eliminating the step of cleaning models up.

Chapter 9 describes ways to assign work to subgroups, iterating among individ-
ual, subgroup, and whole group activities for maximum efficiency.

Prioritize the Deliverables

It’s not possible to predict exactly how long it will take to deliver each model.
Knowing what’s important before you begin the workshop will help you to adjust
the agenda during the session. Decide with your sponsor and planning team
which of the planned requirements models are the most critical and which can be
skipped or skimmed if you run out of time.

Chapter 7 � Products: Ending with the Beginning 143

Know whether you need to deliver more models with less precision or fewer mod-
els with more precision. This will influence the number of QA activities you build
into the schedule. For one set of workshops I facilitated, the products included
business rules, a data model, and life cycles for a well-defined scope. The work
was to be done in four- to six-hour sessions within a four-week time frame.
Anticipating that we might not complete all the deliverables, I needed to know
which was more important: volume or quality. I asked the workshop sponsor
what she wanted from the workshops: more business rules, or fewer, but more
correct, business rules. She chose quality over volume. For that reason, I de-
signed an agenda that added scenarios as a deliverable and also incorporated a
process for testing each set of business rules with those scenarios before moving
on to another set of rules.

144 Part Two � Requirements Workshop Framework

Estimating Time

There is no magic formula for knowing how long it will take to deliver your require-
ments in a workshop. You must consider people factors and product factors.

People factors include how “formed” the group is as you begin (see “Forming,
Storming, Norming, and Performing” in Chapter 6). Newly formed groups need
more time before they can be productive, whereas a group that has worked together
will be able to get down to business more quickly.

Product factors include how “done” you need your requirements to be and how
much of a head start you have before the workshop. You’ll need more time if your
requirements must be very precise and well tested or if you don’t have models to
serve as a starting point. Chapter 9 has generic guidelines for workshop timing by
model.

I can offer a general heuristic from my years of experience: List the deliverables you
think the group can deliver in the workshop, and then divide your expectations by
3. The result will be a more realistic estimate. For example, if you think you will de-
liver a revised glossary, stepwise use case descriptions, prototype screens, and a
high-level data model, you’re likely to deliver one-third less content for each deliv-
erable. This is why it’s important to prioritize your requirements deliverables before
the workshop.

Once participants have a good understanding of their requirements and are working
well together, you should consult them about which ones are most important to
work on together. Well-formed groups are very wise: The participants know what to
do together and how to compensate for time pressures. For example, one group I fa-
cilitated decided to work through four high-priority use cases and then trust two of
the participants to draft the remaining ones and return for a workshop to review,
revise, and approve them.

Wise
Group

Partition Requirements Across
Workshops

If you’re under tight time constraints or if your group is new and will need time
to form, consider delivering your requirements iteratively across multiple work-
shops. An advantage of this approach is the efficient use of group time; partici-
pants take on post-workshop tasks, and the group uses that work as input to
later workshops.

After one workshop in which we created high-level requirements, the partici-
pants went back to their business areas to ask questions of their colleagues and
management so that they’d be prepared to provide details about the use cases
and assess their priority. In another workshop, a list of business policies became
the basis for research by a business analyst to determine which policies could be
changed along with the new system. In yet another workshop, we used the high-
level data model created by the participants to conduct data mapping for two pos-
sible software packages; in that way, we were able to provide details for selecting
a software package in the next workshop.

Figure 7-4 shows an example. Each workshop delivers a predefined set of related
requirements. These requirements then serve as inputs to another workshop oc-
curring soon thereafter. I like to schedule iterative workshops no more than five
working days apart.

There are numerous ways to arrange your session. You can conduct daily morn-
ing sessions and leave afternoons for post-workshop tasks, as described in the
HaveFunds example in Chapter 11; you can use multiday workshops within a
one- or two-week period, and so on. Use a schedule that optimizes the availabil-
ity of people without exhausting them. Try to include time off between tasks that
you will use to jump-start the next workshop.

Define Doneness Tests

A doneness test consists of one or more criteria that you use to determine
whether a particular deliverable is “good enough” to reach closure on. Your done-
ness tests will be more or less precise depending on three factors:

� The project’s size (the number of people being coordinated)

� The criticality of the systems being created

� The priorities of the project (whether, for example, human lives are at
stake or simply human comfort)

Doneness
Tests

Chapter 7 � Products: Ending with the Beginning 145

As Cockburn (2001) aptly points out, more correctness and documentation are
needed by projects with a large number of team members producing critical sys-
tems using nondiscretionary funds. A “light” set of models would not do in that
situation. If, however, you’re building an application for internal consumption
with a medium risk of monetary loss if you deliver defects, your doneness tests
can be looser.

Different stakeholders have different views of doneness:

� A customer might want to deliver the requirements and end product as
quickly and cheaply as possible. Perhaps you need only do some scope re-
quirements and a prototype. The desire is to deliver relatively little detail
for fewer requirements models.

146 Part Two � Requirements Workshop Framework

Use Case
Extensions

Extension
Scenarios

Use Case
Map

Use Case
Packages

Workshop 3

Extension
Business

Rules

Use Case
Non-functional
Requirements:
Frequency and

Priority

Event Table
and Context

Diagram

Actor Map

Initiating
Actor

Use Case
Name and

Brief
Description

Workshop 1

Business
Rules

Use Case
Stepwise

Description

Screen
Prototype

Scenarios

Workshop 2

FIGURE 7-4 Partitioning Requirements Across Workshops

� A user might be concerned with usability, so you’d focus on translating re-
quirements associated with who and how focuses—such as actors, actor
maps, prototypes, interface navigation diagrams, use cases, and use case
maps—into more precise requirements.

� A software designer or architect might be most interested in building a ro-
bust product. She would want requirements models that cross multiple
views and focuses, thus offering a broader understanding of the whole
project rather than only the current release.

Each of these perspectives presents a special challenge to the requirements facil-
itator, who must help the team determine the most appropriate doneness tests for
the short term while also considering the long-term goals of the project and the
needs of the various stakeholders.

Your doneness tests can involve the use of a tool or a process. Available tools and
processes include the following:

� A QA checklist for testing the models (see the next section)

� Scenario- or prototype-based reviews integrated into your workshop
process (see Chapter 9)

� Matrices for analyzing one model or model element against another

� Metaphors for testing doneness

QA Checklist A quality assurance (QA) checklist is a series of ques-
tions, usually stated in binary format, about a requirements model or its ele-
ments, along with questions about how one model cross-checks another. For
example, if you’re producing an actor table, use cases, and the glossary, these
questions would apply for each use case:

� Is the use case named as an actor’s goal?

� Does the use case name start with a strong action verb?

� Does the use case name include a meaningful object?

� Is the object in the use case name defined in the glossary?

The Web site for this book offers other QA checklist questions.

Using QA checklists provides more benefits than may be immediately obvious.
The very process of creating and agreeing on the checklist helps the team—users,

Web
Site

Chapter 7 � Products: Ending with the Beginning 147

software team, perhaps even sponsors—to clarify and define expectations for
each deliverable clearly and precisely. As with using reviews during a workshop
(see Chapter 9), checklists push participants to create high-quality requirements
in the first place. The checklist forces you to begin with the end in mind.

In one workshop I facilitated, the group created scope-level requirements in the
form of an event table and a context diagram. I divided the group of 14 people
into subgroups. Each subgroup received a copy of the same checklist.

As a facilitator, I’ve discovered that participants give you what you ask for. My
experience is that taking a testing attitude toward deliverables helps workshop
participants to find more defects and find them earlier. So I told them, “Find er-
rors in what we created.”

Each subgroup indeed found defects, which were shared with the larger group
and corrected. For example, the group forgot that it had to get periodic updates
from an employee database, and it realized that it would need someone to play
the role of approving certain types of queries to sensitive data. After that, the
group continued the workshop by defining detailed requirements for each event
within the scope.

Matrices Matrices can help you to detect incomplete and extraneous re-
quirements; they also serve as a useful tool for checking doneness. Participants
can also create complete matrices to detect missing or extraneous requirements.

In the matrix in Table 7-3, participants fill in the cells to indicate which actors
initiate which use cases. An actor without an associated use case (such as
Actor02) indicates either an extraneous actor or a missing use case. Perhaps
having two initiating actors might be fine (as in UseCase01); or perhaps it indi-
cates that the actors are truly the same and that you might benefit from having
a more generic name for an actor.

148 Part Two � Requirements Workshop Framework

TABLE 7-3 Sample Matrix for Doneness Testing

Actor01 Actor02 Actor03 Actor04

UseCase01 x x
UseCase02 x
UseCase03 x
UseCase04 x

Metaphors

A metaphor is a symbol, image, or figure of speech. You can use a metaphor as a
loose form of doneness testing. In one workshop, we used a bull’s-eye. I created
a poster with a bull’s-eye showing concentric circles with the label “100%” in the
center. The sponsor and planning team declared before the workshop that the goal
was to achieve 80 percent doneness for the models. At the end of each workshop
day, I gave each participant a colored sticky dot and asked each of them to place
the dot on the bull’s-eye to represent where he believed our requirements deliver-
ables were at the moment.

Each day, over four days, participants placed different dots on the bull’s-eye.
Each day, they got closer to the center. I also used each day’s bull’s-eye in lead-
ing a brief discussion about what they needed to do to get closer the next day.

Metaphors can also include wishes in the form of lists, scenarios, or visions. In
one of my workshops, participants wrote stories of an ideal future, describing
their work environment after all their requirements were met. In another, par-
ticipants provided a list of ideal reports they could get if their requirements
were met. For yet another, participants drew posters of their ideal operational
environment.

Each of these metaphors serves as a doneness test because you can ask partici-
pants to return to their original metaphors or visions after they create their re-
quirements to see whether their vision has been achieved.

Doneness Testing and Decision Making

No matter which doneness tests you use, they’re not a substitute for your deci-
sion rule and decision-making process (see “Decision Rules” in Chapter 6). Your
doneness tests check only the desired level of quality of your requirements, so
you must follow up with your agreed-upon decision-making process. If a done-
ness test tells you that you have “uncooked” requirements, you can still make a
decision on how to proceed.

In one of my workshops, the decision maker was the business project manager;
he was also a subject matter expert. He decided to reach closure on a set of use
cases, prototype screens, and business rules even though some of the QA answers
indicated that the models were not complete. By following the decision-making
process, he learned that the participants, including the software team, supported
the current states of the models despite the flaws. He made the decision to declare
them good enough, and we moved on to another set of requirements.

Chapter 7 � Products: Ending with the Beginning 149

INTANGIBLE OUTPUT PRODUCTS

In addition to the tangible deliverables, your workshop should deliver intangible
outcomes, including decisions, enhanced knowledge, and increased motivation.

Stopping to test for closure—in other words, to make decisions about the state of
your requirements—sounds, on the surface, as if it would take valuable work-
shop time. Actually, it speeds up a workshop. Forcing an explicit decision creates
tension as you talk about what is missing, wrong, or important. It requires you
to analyze related details. It emboldens communication.

150 Part Two � Requirements Workshop Framework

Combining Pre-Work with Doneness Tests: An Example

For one workshop I facilitated, plant managers needed to provide high-level data re-
quirements for financial analysis. There were many complaints about the existing
data: It was inconsistent, incorrect, late, and more. The primary deliverable for the
workshop would be a data model, supplemented by the questions that managers
would need to ask to run their plants, streamline operations, and meet operating
targets.

Using a spreadsheet, I created a template in which they would enter their plant-
management questions along with the business reasons for the questions, the deci-
sions they made based on the answers, and a list of specific data attributes they
would need. During the workshop, a review of those questions led to the discovery
of high-level data entities and attributes.

We also asked the plant managers to bring to the workshop a list of the top three
reports they used to help run the business, and a list of their top five “wish list”
reports.

Their pre-work served as doneness tests for their data requirements, which in the
workshop were listed on wall posters. In subgroups, the managers responded to
these questions:

� Can you get the top three reports using the questions you’ve created? (If not,
write a new question.)

� Can you get the top three reports with the data shown on the walls? (If not,
add all the missing data to the entity—we called them data groupings in the
workshop—to which it belongs.)

� Will your wish list reports answer the questions you’ve created? (If not, add
one or more new questions to get answers.)

� Will your wish list reports be answered with the data shown on the walls? (If
not, add all of the data to the appropriate data grouping.)

Making decisions explicit requires the group to define ground rules for achieving
closure (see “Basic Ground Rules” in Chapter 6). Reaching closure requires that
you combine your doneness tests with the use of a decision rule process.

The technique is simple: You explicitly define what needs to be decided during
your workshop, and then add those decisions to the list of output products. Ask
the workshop sponsor or project sponsor to remind people about it during the
workshop kickoff. Typical decisions include the following:

� The scope of the project as represented by the requirements

� Which requirements, as represented by use cases, will be delivered for the
current release

� The detailed requirements and their priorities for the next release

You also need to know whether other intangible outcomes are desired, such as
people leaving the workshop with increased knowledge or motivation. These can
be the healing hidden agendas discussed in Chapter 6. If you specify these out-
comes, you must design workshop activities to incorporate ways of addressing
them (see Chapter 9).

Note that this might prompt you to revise the list of workshop observers (see
“Observers” in Chapter 5). When one intangible outcome is to increase the soft-
ware team’s knowledge of the business, for example, include developers and
testers as observers. For one project, one desirable intangible outcome was for
analysts and the project leader to become knowledgeable about how to conduct
a requirements workshop. We included them as observers; I gave them a list of
questions to keep handy while they observed. After the requirements workshop,
we also conducted a debrief and an action planning workshop to help them in-
corporate, in their own projects, what they learned from observing.

When you ask questions about intangible outcomes, you might uncover hidden
agendas. When I asked one project leader about intangibles, he told me that the
team members were discouraged by prior requirements efforts and were con-
cerned that they wouldn’t learn anything new. He wanted to enhance the team’s
motivation. We decided that it was important for the project sponsor to kick off
the workshop and for subject matter experts, not surrogates, to attend.

In another project, the sponsor wanted to increase team members’ motivation. In
addition to having him kick off the workshop, I facilitated a brief activity in
which each person shared his or her professional development goals.

Chapter 7 � Products: Ending with the Beginning 151

INPUT PRODUCTS

Once you’ve planned your workshop outputs, it’s time to determine what input
products you need. Using a set of well-thought-out input products speeds up
your workshop and helps groups reach closure.

Input products include a variety of materials that prepare participants for the
mental work they’ll do, provide tools for jump-starting workshop activities, give
guidance for creating higher-quality requirements models, and serve as doneness
test resources. Input products can include the following:

� The workshop agenda

� Draft requirements models

� Systems and user documentation

� The results of pre-work

� Templates

� Workshop aids

The following subsections discuss each of these kinds of input products.

The Workshop Agenda

The workshop agenda is an ordered list of activities planned for the session. The
agenda, which you send to all the participants before the workshop, should also
include your other P’s: purpose, participants, principles, products, and place. (See
Chapter 9 for tips on designing your agenda; an agenda template is available on
the book’s Web site.)

Draft Models

Use predecessor requirements models or draft output models to jump-start your
modeling work. For example, if you’re creating use cases in the workshop, you
can use an actor table or an actor map as a mechanism to help you create a list
of use cases. By using focus questions about the predecessor model (for exam-
ple, “What goals does this actor have for interacting with the system?”), you can
elicit another related model. (See “Using Focus Questions” in Chapter 9 for more
about focus questions.)

You can also use predecessor and draft requirements in performing doneness
tests on models. For example, a list of scenarios created before the workshop can

Web
Site

Pre-work

152 Part Two � Requirements Workshop Framework

be used in testing use cases. To test for doneness during the workshop, you can
use pre-work such as user-created scenarios and prototype screens created by the
software team by walking through them in parallel with use case steps.

A draft version of a model provides the basis for an activity to fix or finish it. For
example, you can use a draft event table or context diagram during an activity in
which the group reaches closure on scope. A rough version of a statechart dia-
gram gives you a starting point for generating more states, which in turn triggers
events and business rules.

At a minimum, you should create a draft glossary before a requirements work-
shop. The terms in the glossary are the semantic basis for all your user require-
ments; the definitions are themselves fundamental business rules.

I like to ask one person to be the glossary guardian, the person in charge of
keeping the glossary up-to-date during the workshop. The job of the glossary
guardian is to listen for business terms that haven’t been defined or that might
need to be clarified. Allow everyone to tune in to terms; challenge each partici-
pant to also play the role of glossary guardian. (To make it fun, I sometimes an-
nounce a reward for anyone who stops the group when a term needs to be
defined or clarified. Reverse rewards can work, too, if you make them humor-
ous—for example, getting “banged” with a rubber hammer if you use a term
without explaining it.)

The glossary guardian keeps the glossary up-to-date during the workshop.

Data modelers make excellent glossary guardians because they naturally think in
terms of words and their connections, and they often seek precise definitions of
business terms.

Universal Models An alternative or supplemental draft model you
can use as input is a universal model. This generic business model is documented
in books or available for purchase from consulting companies.

Universal models tend to be abstract. They use generic business terms (business
party, transaction, event, agreement) that you can use as starting points for
modeling activities. For example, if the universal model is represented as a data
model, participants can list examples of each concept in the model or list sub-
types to jump-start the modeling of their own domain model.

Chapter 7 � Products: Ending with the Beginning 153

Systems and User Documentation

It’s a good idea to have documentation available that might be useful during the
workshop. This includes the project charter or vision statement, organization
charts, operating procedures and guidelines, reference manuals, user documen-
tation, help desk documentation, user job aids, training manuals and documen-
tation, and systems manuals and documentation. Identify each document that
might be useful, and be sure that someone is responsible for bringing it.

Pre-Work

Pre-work involves specific assignments for participants to complete before the
workshop. Examples of pre-work include filling out a template that lists steps to
complete a task, naming business rules in a specific format for a set of use cases,
listing stakeholders and their functional areas, reviewing and commenting on a
set of draft use cases, reading the project charter, listing key inputs needed by
users, and drawing a poster that depicts an image of the future after the re-
quirements have been met.

Asking participants to complete pre-work has one or more of these benefits:

� It mentally prepares participants for the type of thinking they’ll do in the
workshop.

� It provides research information and starting points to one or more work-
shop activities.

� It forces participants to seek information from other experts who might fill
gaps in their subject matter expertise.

Specifying some kind of pre-work signals that the requirements workshop isn’t
an ordinary meeting.

Pre-work is essential when you’re operating under a tight time frame, when
users are surrogates and not real subject matter experts, when participants hail
from different business areas, or when you’ll be working with detailed require-
ments. Your workshop schedule must take into account the time for preparing
pre-work. For example, you may need to create a template with instructions (see
“Templates” next).

Designing pre-work is one thing, but how do you get participants to complete it?
Your sponsor and your planning team can help. For example:

154 Part Two � Requirements Workshop Framework

� Have the pre-work assignments made by the sponsor or an influential
planning team member.

� Provide information at least one week before the workshop.

� Conduct an orientation meeting to brief participants on how to complete
the pre-work, particularly if their assignments are complex.

� Ask the workshop sponsor or project sponsor to send e-mail or voice mail
to the participants requesting that they complete their pre-work.

� Have the pre-work responses sent to the workshop sponsor or a planning
team member rather than to the facilitator.

Templates

Templates are standardized formats that you use during workshop activities to
structure the contents of an output product. Templates can be used for building
the requirements models, prioritizing requirements, creating related deliverables

Chapter 7 � Products: Ending with the Beginning 155

Workshop Orientation Meetings

Under certain circumstances I like to arrange orientation meetings before workshops.

In one workshop I facilitated, participants came from around the globe. They had
pre-work assignments and would be gathering in a central location for the session.
Many of them had never participated in a requirements workshop, and few of them
knew one another. We arranged a videoconference orientation meeting kicked off by
the project sponsor. In this meeting, we reviewed the workshop agenda and clarified
how to complete the pre-work. We also discussed important issues such as what to
wear and how they would access their voice mail on breaks during the workshop.
This 45-minute meeting helped to break the ice before the live workshop.

Here are some circumstances under which you should consider holding an orienta-
tion meeting:

� Participants have pre-work assignments that may involve completing tem-
plates or doing complex research.

� Participants don’t know one another.

� Participants would benefit from hearing suggestions for what materials to
bring to the workshop.

� You are meeting over a period of days or weeks.

Keep the meeting short, and be sure you have the project or workshop sponsor kick
it off to set the stage.

(such as an action plan or a communication plan), debriefing the workshop, and
assessing the team climate (if you incorporate team-building activities into the
workshop).

Creating templates forces your workshop planning team to think deeply about
project-specific deliverables. It also helps participants to make the best use of
their workshop time, and it helps you to provide precise, clear instructions about
workshop tasks.

156 Part Two � Requirements Workshop Framework

Business Rules Templates

Business rules come in many forms and categories, including terms, facts, con-
straints, factor clauses, and action clauses. There’s no agreement on a standard set
of categories for business rules—nor should there be, because the rules should fit
the business problem. Some business problems are more business rule-based
(for example, insurance underwriting), whereas others are more business rule-
constrained (such as payroll). Business rules are vital for high-quality require-
ments, and they also provide useful links to other requirements models.

You can capture your business rules as free-form statements generated by business
people, but these statements tend to be ambiguous and not rigorous. Each free-form
business rule may decompose into numerous rules. You must untangle each state-
ment and resolve its internal inconsistencies. Also, it’s hard to trace such unstruc-
tured statements to other requirements models, and they create change control
headaches. If the rules are smaller and more discrete, you can more easily manage
change. To capture business rules atomically, it helps to have a business rule tem-
plate designed for the purpose.

A business rule template presents standard, precise syntax for writing business
rules. The template should be designed so that the resulting business rules are de-
clarative, atomic, distinct, independent statements. The very process of tailoring a
template to a particular business problem is beneficial because it requires you to
understand the problem in great depth. This means working directly with business
customers to design and tailor the template.

Examples of useful business rule templates include the following:

� Each <business term> may <verb phrase> <business term>.

� When <event|condition is true>, then <action>.

� If <condition true>, then <condition true/conclusion>.

You can use your templates during the workshop to guide participants in writing
business rules.

For one workshop, I worked with the planning team to settle on a template for
the use cases. For another, I created a business requirements matrix template for
use during the workshop. For yet another, I designed a simple form for captur-
ing scenarios. In another case, I devised a template for scenario testing our use
cases and data model. In several workshops in which the subsequent software
product had cross-functional impact, I used a communication plan template. For
most workshops delivering precise business rules, a business rule template is
also critical.

Your template should include instructions (or it should be supplemented by a
document work aid that has instructions) and perhaps examples of how to prop-
erly complete the template. Templates can be created as word processing docu-
ments or can be drawn on posters. If your recorder acts as a technographer (see
Chapter 5), she can input the group’s work into a word processor. You can then
display or print the contents of all completed templates for participants to refer to
or review during the session.

Templates help to ensure that you get high-quality, consistent information from
participants. This is especially critical when you use multiple subgroups working
on different requirements for the same model at the same time during the ses-
sion, a technique discussed in Chapter 9. Templates also force you to clarify
doneness tests because you must describe what each deliverable should look
like. If you can visualize what the group members must deliver, it’s easier to de-
sign the collaborative processes to get them there. Templates also help you to
give precise instructions to the group during the workshop.

You can supplement the template with a completed example (see “Examples”
later in this chapter), which helps participants understand the models they need
to create.

Workshop Aids

Workshop aids are tools for conducting activities in the session. These aids in-
clude static posters for participants to reference, sample models, instructions or
tips to use while working on the models, worksheets for documenting changes to
models, and materials and supplies.

Posters Posters are charts that are visible in the room. Create your posters
before the workshop, and place them on the workshop room walls using tape,
pins, or tacks or by using sticky poster paper (posters on a pad with the top back

Chapter 7 � Products: Ending with the Beginning 157

prepared with repositionable glue). You should prepare posters with the follow-
ing titles:

� Workshop Purpose

� Workshop Products

� Workshop Agenda (the flow of activities)

� Issues or Parking Lot (titled and left blank)

� Input Products

� Actions (titled and left blank)

� Decisions (titled and left blank)

Examples Sample models use a “begin with the end in mind” philosophy:
They show participants what the end product should look like by providing sim-
ple but correct examples. I’ve found these examples useful for almost every re-

158 Part Two � Requirements Workshop Framework

Tips for Working on Posters

� Print in thick, CAPITAL letters.

� Write straight up and down.

� Use plain block letters (not script).

� Avoid black, except for numbering charts.

� Use these colors for text: blue, brown, purple, green.

� Use these colors for highlighting: orange, red, yellow, pink.

� Be faithful to people’s own words.

� Use white space liberally.

� Consider using the symbols shown in Table 7-4.

Table 7-4 Poster Symbols

• Bullets (centered dot) to help items stand apart

� Stars for noteworthy items

� Circles to connect ideas and draw attention to items

Borders to frame a page or blocks of text

→ Arrows for sequences, cycles, and merging

quirements model that employs a template, including use cases, business rules,
and scenarios. To create examples that are relevant to the problem, consult with
your planning team or other subject matter experts. Even an example that’s
wrong, but is correctly written or drawn, is useful for participants.

Instructions and Tips Prefabricated instructions or guidelines can
help you save time during the workshop. Tell participants what they need to do
for each workshop activity, and also give them written instructions (paper hand-
outs or on posters). This method gives everyone a reference point for completing
activities.

Provide instructions, especially early in a workshop, for subgroup activities (see
Chapter 9). For example, instructions might stipulate that there should be a time-
keeper, a recorder, and someone to make sure that the content of the work fol-
lows a template format.

It’s a good idea to include tips for creating high-quality models. In one workshop,
I gave participants a list of good verbs to use in their use case names. In another,
I provided a list of verbs for them to use for data model relationships. These
kinds of tips help save workshop time.

Worksheets Your recorder can use worksheets for tracking the disposi-
tion of and changes to requirements models. When your recorder uses a laptop
with a word processor or spreadsheet program, you can project the changes on
a screen or print them for reference. In several workshops that delivered use
cases, I found a use case completion worksheet helpful (see the Web site for an
example).

A note of caution: Don’t assume that your readers will be able to understand your
workshop aids. Test any input products you create—instructions, examples, tips,
worksheets— before you give them to participants. Ask planning team members
and a few of the participants to review the instructions and see whether they un-
derstand them. Then, during the workshop, review the instructions and ask for
clarifying questions.

Materials and Supplies Materials and supplies include all the
physical things you’ll need to run the workshop: items such as name cards,
posters, cards or sticky notes, color markers, paper cutters, side-hole punches, a
printer, and binders. (A generic list is available on the Web site.)

Web
Site

Web
Site

Chapter 7 � Products: Ending with the Beginning 159

Set up binders with dividers in which participants can store all the paper docu-
ments they’ll work with during the session. I like to supply tab dividers already
labeled for things such as purpose, principles, and agenda. The binders can also
hold copies of modeling tips, activity instructions, templates, and examples.

After the workshop, participants can use the binders for reference and for stor-
ing hard copies of requirements and workshop and project information. Binders
save people time by helping them to avoid searching through large sets of docu-
ments. They also help participants stay organized during the workshop, and us-
ing them sends a message that their work warrants a special storage place.

THE WORKSHOP REPOSITORY

The workshop repository is where you store the soft copies of your workshop
products, pre-work, and post-workshop products. You might use a project Web
site, a requirements management tool, a network folder, or a combination of
these. Remind participants before, during, and after the session about the repos-
itory. Arrange access for them, allowing them to deposit any pre-work there.

TIPS

� For your workshop deliverables, use a combination of text and diagram-
matic models.

� Select requirements models that align with the problem domain.

� Use multiple views and focuses.

� Partition each requirements model into parts; group parts at the same level
of detail.

� Prioritize your expected deliverables.

� Be realistic about how much participants can deliver.

� Design or use templates for your requirements deliverables.

� Provide examples or draft models for participants to use as starters.

� Assign pre-work to participants.

� Define doneness tests for each requirements model you plan to deliver.

� Use multiple workshops integrating the best practices listed here (see the
example in Figure 7-5).

160 Part Two � Requirements Workshop Framework

Chapter 7 � Products: Ending with the Beginning 161

U
se

 C
a
se

E
x
te

n
si

o
n

s

R
e
le

a
se

S
tr

a
te

g
y

W
o
rk

sh
o

p
 3

E
x
te

n
si

o
n

B
u
si

n
e
ss

R
u

le
sU

se
 C

a
se

N
o

n
fu

n
c
ti

o
n

a
l

R
e
q

u
ir

e
m

e
n

ts
:

F
re

q
u

e
n

c
y
 a

n
d

P
ri

o
ri

ty

U
se

 C
a
se

N
a
m

e
 a

n
d

B
ri

e
f

D
e
sc

ri
p

ti
o

n

U
se

 C
a
se

M
a
p

A
c
to

r
M

a
p

In
it

ia
ti

n
g

A
c
to

r

W
o

rk
sh

o
p

 1

B
u
si

n
e
ss

P
o
li
c
ie

s
b
y
 U

se
C

a
se

D
ra

ft
D

a
ta

M
o
d
e
l

B
u
si

n
e
ss

R
u
le

s
Te

m
p
la

te

S
c
e
n
a
ri

o
s

D
a
ta

M
o
d
e
l

U
se

 C
a
se

P
a
c
k
a
g
e
s

U
se

 C
a
se

P
a
c
k
a
g
e
s

S
c
re

e
n

P
ro

to
ty

p
e

B
u

si
n

e
ss

R
u

le
s

W
o

rk
sh

o
p

 2

U
se

 C
a
se

S
te

p
w

is
e

D
e
sc

ri
p

ti
o

n

G
lo

ss
a
ry

E
v
e
n
t

Ta
b
le

 a
n
d

C
o
n
te

x
t

D
ia

g
ra

m

Q
A

Q
A

Q
A

F
IG

U
R

E
 7

-5
 W

o
r
k
s
h
o
p
 I

t
e
r
a
t
io

n
s
 I

n
t
e
g
r
a
t
in

g
 P

r
e
-W

o
r
k
,

P
o
s
t
-W

o
r
k
,

a
n
d
 Q

A

QUESTIONS TO ASK STAKEHOLDERS

ABOUT PRODUCTS

The following questions can help you determine workshop inputs and outputs.
You can preface these questions by saying, “The next set of questions will help
us determine what products to deliver during the workshop.”

� What deliverables do you expect to produce in the workshop?

� How much detail should each deliverable have?

� What criteria will you use to determine that the deliverables are complete,
clear, and correct? How will we know that they have the quality you expect
and need?

� Would you rather have more requirements delivered at a higher level of
detail, or fewer requirements with more detail?

� What products are needed as input to the workshop? How much lead time
do we have to pull together input products?

� Who can review the instructions for the group activities that we’ll create?

� Where will the workshop materials be stored (a workshop repository)? Do
we need to do any work to create this repository?

See the Web site for the book for more questions about workshop products.

FOR MORE INFORMATION

Boehm and Basili (2001) summarize 10 ways to reduce defects in code, includ-
ing peer reviews and perspective-based reviews (such as using scenarios to walk
through your requirements).

Boehm and Hoh (1999) describe a technique for analyzing and negotiating con-
flicts in requirements.

Brooks (1995), a classic on the human aspects of software engineering, points
out that eliciting requirements is the most difficult part of building software. The
author emphasizes the need to continually refine and iterate requirements with
customers.

Buzan (1989) provides insights and techniques, based on research on the human
brain, for tapping into the right and left sides of our brains.

Further
Readings

Web
Site

???

162 Part Two � Requirements Workshop Framework

Cockburn (2001) presents wisdom on how software teams work best. Chapter 4,
on methodologies, provides an excellent discussion on how you must tailor your
methodology for each project, including the types of work products and their
precision.

Cohen (1995) provides a step-by-step guide to quality function deployment
(QFD), a systematic methodology for deriving and evaluating product features
from both customer and designer points of view. The key technique, the “voice
of the customer,” is explained along with Kano’s understanding of quality from
the customer’s perspective.

Chapter 9 of Highsmith (2000) discusses workstate lifecycle management, in
which teams iteratively deliver components (from requirements to code and
tests) in a predefined state, rather than focus on workflow.

Howell (1995) is a useful reference for a variety of visual tools you can adapt for
your supplemental workshop deliverables. Included are tools for representing
text information in provocative and interesting ways, such as circles, continu-
ums, workflows, t-charts, and a variety of worksheets.

Chapter 7 � Products: Ending with the Beginning 163

