
5Overview of Software Requirements©2005 GOAL/QPC

Why should I define requirements?
To deliver a successful software product, you need to
develop, document, and validate software requirements.
Properly understood requirements allow you to “begin
with the end in mind” and are the basis for determin-
ing the success of your implemented software. After all,
the purpose of software development is to satisfy users’
needs, and these needs are precisely what the require-
ments define.

The price is high for not defining requirements or not
doing it well. Poorly defined requirements result in
requirements defects—errors in requirements caused by
incorrect, incomplete, missing, or conflicting requirements.
Defective requirements may result in:

• Cost overruns,

• Expensive rework,

• Poor quality,

• Late delivery,

• Dissatisfied customers, and

• Exhausted and demoralized team members.

Correcting defective requirements accounts for almost
one-half of the cost of software development and is
the most expensive kind of development error to fix.
Defective requirements become multiplied in number
and seriousness as they spread among multiple complex
components in design, code, and tests. The result is a need
for extensive and expensive rework, which costs from ten
to one hundred times more to fix later in development.

To reduce the high risk of software project failure and the
large costs associated with defective requirements, you
must properly define requirements early in the software
development process.

Overview of Software Requirements ©2005 GOAL/QPC6

Requirements verification and validation
Requirements are critical to the success of the end product.
Before you write the software’s code, the emphasis is on
the problem (i.e., defining what to build and ensuring that
it is necessary to meet user needs). Although software
tests are not executed during requirements development,
performing conceptual tests will help to uncover in-
complete, incorrect, and unclear requirements.

After you have begun to write the code, the emphasis is
on testing the software solution against the requirements.
Performing user acceptance tests will link the original needs
back to business customers and end users, ensuring that
the right product was built.

As requirements are developed, they are verified to see
if they satisfy the conditions or specifications of the
requirements development activity. Verification is like
good management—it ensures that you built the software
correctly.

When requirements are identified and later tested in user
acceptance testing, they are validated to ensure that they
meet user’s needs. Validation is like good leadership—it
ensures that you built the correct software.

Whereas requirements verification represents the
development team’s point of view—ensuring the software
satisfies the specified requirements, requirements validation
is concerned with the customer’s point of view—ensuring
the customer’s needs are met.

7Overview of Software Requirements©2005 GOAL/QPC

How Requirements are Verified and Validated

Business
results

Code

Business
requirements

User
requirements

User
acceptance

tests

Software
requirements

System
tests

System and
subsystem design

Integration
tests

Component
design

Unit tests

Validate

Validate Verify

Verify

Verify

What types of requirements are there?
Software requirements are broadly divided into functional
and nonfunctional requirements. Functional requirements
describe product capabilities—things that the product must
do for its users or allow its users to do with the software.
Functional requirements are the doing part of software—the
actions, tasks, and behaviors that users generally interact
with. They can be stated as:

• “The system shall provide the capability for sched-
ulers to assign contractors to jobs in their local area.”

• “The system shall permit the inventory manager to
search for available inventory items.”

• “The system shall notify the operator when the
temperature exceeds the maximum set value.”

• “The system shall store a log of temperature readings
every three seconds.”

Overview of Software Requirements ©2005 GOAL/QPC8

Nonfunctional requirements are properties that the product
must have that may not be evident to the user, including
quality attributes, constraints, and external interfaces:

• Quality attributes describe properties of the soft-
ware’s development and operational environment,
such as its performance, capacity, maintainability,
portability, reliability, and usability. (See section
5.2 for more information on quality attributes.)

• Design and implementation constraints limit how the
software can be designed. For example, a limit on
the maximum number of concurrent users, the en-
vironment that the software will operate in, or a
predetermined programming language to be used
will all constrain the software design and im-
plementation.

• External interfaces are the interfaces with other
systems (hardware, software, and human) that the
proposed system will interact with.

Nonfunctional requirements are the being part of the
software—the characteristics and constraints for the
software’s behavior. They should be documented in
quantifiable terms, such as:

• “The response time for loading all estimate
information onto the screen shall be no more than
six seconds after the user submits the estimate
request.”

• “During the peak holiday season between Novem-
ber 1st and January 5th, the inventory search
capability shall permit 500 simultaneous users to
search for inventory items.”

• “The system’s scheduling capability shall be avail-
able weekdays from 7 a.m. PST to 7 p.m. PST.”

• “The system shall function on the following
operating systems: Isis version 6 or higher and Grok
version 2.0 and higher.”

9Overview of Software Requirements©2005 GOAL/QPC

Where do requirements come from?
Software requirements operate on three levels: the
requirements related to your business, those related to
your users, and those that describe the software itself.

Requirements Levels

Business
Requirements

User
Requirements

Software Requirements

Level 1:

Why the project
is being undertaken

Level 2:

What users will be able
to do with the product

Level 3:

What developers
need to build

Level 1: Business Requirements

Business requirements are statements of the busi-
ness rationale for authorizing the project. They
include a vision for the software product that is
driven by business goals, business objectives,
and strategy. Business requirements describe the
high-level purpose and needs that the product
will satisfy to increase revenue, reduce operating
expenses, improve customer service, or meet
regulatory obligations. The vision for the product
provides a long-term view of what the end prod-
uct will accomplish for its users and should include
a statement of scope to clarify which capabilities
the product will and will not provide.

