
Top Ten Ways Project Teams Misuse Use Cases -
- and How to Correct Them

Part II: Eliciting and Modeling Use Cases

by Ellen Gottesdiener

Principal
EBG Consulting

Use cases are a favorite way to describe the desired
functionality of a software system under development.
But creating use cases is by no means a foolproof
process. In my many years of facilitating software
development teams, I've encountered many cases of
what I call (tongue firmly in cheek) "use case abuses" --
misuses and mistakes teams make when documenting
and developing use cases. This article is the second in a
two-part series that focuses on my own top ten list of
"Misguided Guidelines" teams use for creating use cases.

Part I, published in the June issue of The Rational Edge,
examined ways to correct the first six of these erroneous
"guidelines," which relate to use case form and content.
In this issue, I explore the remaining four mistakes and
misuses, which revolve around the process of eliciting
and modeling use cases.

Here's a quick recap of those "Ten Misguided
Guidelines":

1. Don't bother with any other requirements representations.
(Use cases are the only requirements model you'll need!)

2. Stump readers about the goal of your use case.
(Name use cases obtusely using vague verbs such as do or process.
If you can stump readers about the goal of a use case, then
whatever you implement will be fine!)

3. Be ambiguous about the scope of your use cases.
(There will be scope creep anyway; you can refactor your use cases
later. Your users keep changing their minds, so why bother nailing
things down?)

jprince
Copyright Rational Software 2002

jprince
http://www.therationaledge.com/content/jul_02/t_misuseUseCases2_eg.jsp

4. Include nonfunctional requirements and user interface details in
your use-case text.
(Not only will this give you a chance to sharpen your technical skills,
but also it will make end users dependent on you to explain how
things "really work.")

5. Use lots of extends and includes in your initial use-case diagrams.
(This allows you to decompose use cases into itty-bitty units of
work. After all, these are part of the UML use-case notation, so
aren't you supposed to use them?)

6. Don't be concerned with defining business rules.
(Even if they come up as you elicit and analyze use cases, you'll
probably remember some of them when you design and code. If
you must, throw a few into the use-case text. You can always make
up the rest when you code and test.)

7. Don't involve subject matter experts in creating, reviewing, or
verifying use cases.
(They'll only raise questions!)

8. If you involve users at all in use-case definition, just "do it."
(Why bother to prepare for any time with the users? It just creates
a bunch of paperwork, and they keep changing their minds all the
time, anyway.)

9. Write your first and only use-case draft in excruciating detail.
(Why bother iterating with end users when they don't even know
what they want, and they only want you to show them meaty stuff,
anyway?)

10. Don't validate or verify your use cases.
(That will only cause you to make revisions and do more rework,
and it will give you change control problems during requirements
gathering. So forget about it!)

If you recognize yourself in any of the last four "guidelines," you're not
alone. Fortunately, there are some ways -- many of them surprisingly
easy, all of them time-tested -- to avoid falling into these traps.

Correcting Misguided Use-Case Modeling Guidelines

Let's start with one mistake many teams make: trying to construct use
cases without the help of the people who ultimately need and use the
software.

7. Don't Involve Subject Matter Experts in Creating,
Reviewing, or Verifying Use Cases.

One way to play Russian roulette with your requirements is to define them
without user input. "Users" is a broad term that includes:

● Direct end users who will interact directly with the system (human
actors).

● Business subject matter experts who have content knowledge but
may not also be direct end users.

● Customers who sponsor the development project with resources.
For commercial and business systems software, customers are the
people or organizations who commission a software project. For
shrink-wrap software, customers are end users of the software or
perhaps buyers who might not interact directly with the software.

It can be hard to figure out how to implement a cost-effective system for
involving users. Each category of users has insights into user
requirements, yet it often seems that they are all too busy, uncommitted,
or inaccessible to the project. If you're having trouble getting good
feedback, it's time to rethink your user involvement strategies. First,
consider what you've done in the past as an opportunity to learn what
does not work in terms of getting user and customer involvement. After
all, as Albert Einstein (or Benjamin Franklin, depending on which authority
you consult) once quipped, "The definition of insanity is doing the same
thing over and over and expecting different results." Don't assume various
user classes are inaccessible. Instead, invent creative ways to involve
them in your requirements process. Don't get stuck with elegant but
inaccurate use cases. After all, user requirements should describe what
users really need and not the project team's interpretation of possible
needs.

To mitigate requirements risks on one project, I helped the development
team conduct a chartering (start-up) workshop that included risk analysis.
Participants generated a list of requirements risks, ranked them, and then
identified risk mitigation strategies for the high-probability, high-impact
risks. One such risk was lack of access to the "real" subject matter
experts. It turned out that the best strategy was one we had already
employed: inviting the project sponsor and stakeholders to the workshop.
When these people saw the likely outcome if experts did not fully
participate in the requirements work, they came up with several creative
approaches. For example, they changed the timing of monthly reports to
give the experts time to participate in requirements elicitation, offloaded
some work to mid-level experts to expand their skills, and shifted the
timing for requirements workshops to permit business experts to handle
high-priority issues at the start and end of each workshop day.

How much user participation do you need? At a minimum, end users
should verify requirements by doing use-case walkthroughs. Scenarios --
sequences of behaviors or example uses of a use case -- are the best way
to conduct a walkthrough, especially if the end users have developed the
scenarios. Even if they can't be involved in ongoing use-case specification,
they can help you fix and evolve the use cases during that hour or two
walkthrough.

Another approach is to engage subsets of customers: sponsors (who
allocate resources to the development effort) and champions (who keep
the project alive and people motivated) to help increase end-user
involvement. To do that, take the pause that refreshes -- do a
requirements debrief (also called a retrospective). Gather your team to
assess your most recent requirements work. Seek to understand what

happened during requirements -- the good, the bad, and the ugly --
including how customers and users were (or weren't) involved. After
learning about what worked, what didn't work, and what could be
improved, name specific actions that you can take to do better next time.
Then present this list to your managers and get their support. If managers
and stakeholders don't participate in the debrief, then invite them to a
brief presentation of your findings.

If you're developing commercial software, it is worth doing whatever it
takes to gain access to your true end users. A big concern for
requirements in these projects is a possible disconnect between what real
end users need and want and what surrogate users think end users will
need and want. In general, it's not a good idea to develop detailed use
cases before doing some reality checks with real end users. Try to get
them to commit to a session in which you can conduct reviews or
walkthroughs with them, or show them early prototypes.

If you simply can't get the customer's time, then product managers can
serve as stand-ins for end users. They can conduct focus groups to get
feedback on draft user requirements -- or prototypes -- for some scenarios
covered by your draft use cases. Or, you can ask knowledgeable business
people in the marketing organization to role-play representative end
users, inventing names and personal backgrounds for each person to
make the role play experience more realistic. One commercial vendor
conducted requirements workshops with its top three customers at each of
the customers' respective locations, and promised those companies that
they would be beta site customers. This was a win for both parties.

How can you use users' time most effectively? The users themselves can
help you figure that out. As you attempt to involve them more fully,
periodically solicit their feedback about how the process is working for
them. Tell them what you need for the requirements development process
to be successful, explaining the risks associated with insufficient user
involvement. This will allow both of you to adjust your interactions and
build sound and trusting relationships.

Now, on to the next common mistake.

8. If You Involve Users at All in Use-Case Definition, Just "Do
It."

User requirements don't come from thin air. As you begin use-case
modeling, there is always something to start with, even if it's a simple
business goal statement or objective jotted on a napkin, a context
diagram reverse-engineered from an existing system, or a list of customer
complaints and change requests.

As a starting point, you need to draft some requirements models, even if
they're wrong or incomplete, before gathering users together. These draft
models should look rough and unfinished, inviting users to fix and
elaborate on them. Low fidelity tools such as whiteboards, poster boards,
and walls with sticky notes or cards pinned to them are good ways to do
initial documentation for user requirements.

Draft models are a solid basis for asking focus questions, queries that
direct people's attention to a specific topic. These questions give you the
information you need to generate, evaluate, filter, elaborate, and verify
the content of your models. For example, suppose you've drafted an actor
table or map, and now you want to name use cases. Your focus question
would be, "What goals does this actor have for interacting with the
system?"

Use a variety of starting models, combining text and diagrams if possible.
For example, you might start with a use-case list and an actor map, a
context diagram and an event table, a list of stakeholder classes and a
workflow (process map) diagram, or an analysis class model and some
scenarios. Remember to pick models that fit the business problem domain
(see the discussion of Misguided Guideline #1 in Part I of this series,
published in the June issue of The Rational Edge).

Using multiple models (also discussed in Part I) helps you to quickly get
details for your entire requirements set. For example, suppose you're
using a high-level domain model or a statechart diagram. Focus questions
for those models might be, "What do you do with <domain> to get your
work done?" and "What system interactions are needed when the
<domain> is <in statename> (e.g., "What do you need to do when claims
are pending?").1

Be sure the right people are working with your user community.
Requirements work is difficult and takes certain skills and proclivities,
including the ability to listen, question, and abstract, as well as a genuine
interest in people's work life, a sense of curiosity, and a tolerance for
ambiguity. If team members working on requirements lack these skills,
then seek training and mentoring for them or grow requirements expertise
in others who have natural skills.

Let's examine another common error.

9. Write Your First and Only Draft in Excruciating Detail.

You can specify use cases using various forms and formats and with
varying degrees of precision. To write highly detailed use cases, start with
high-level descriptions and then provide greater detail iteratively, after
you clarify each use case and ensure that it is important to the project.
This strategy will save you unnecessary work, allow you to correct defects
along the way, and speed your overall requirements effort.

Table 1 shows some sample use-case forms. Note that the level of
complexity increases as you move down the table.

Table 1: Possible Use-Case Forms and Formats

Text Format Visual Format

Use-case name only ("verb +
[qualified] object")

Use-case diagram (ovals and
Actors icons, à la the Unified
Modeling Language, or UML)

Use-case name plus single sentence
goal statement

Same as above

Use-case brief paragraph description
(three to six sentences explaining what
the use case does)

Use-case dependency diagram
(UML ovals with dependency
notation2)

Sequence format (use-case header
information plus a list of ordered steps)

Use-case flow or steps (activity
diagram, flowchart, process
map)

Conversational format (use-case
header information plus two columns --
one for Actors and one for system
responses -- written in a
conversational style)

Use-case flow or steps
(sequence diagram -- with an
Actor class, activity diagram,
flowchart, process map)

Here's an effective way to plan your iterations.

● First, decompose your various requirements models into their
component parts. For example, a use-case paragraph is part of a
complete use-case description, and data attributes are part of an
analysis class model.

● Next, group these component parts at roughly the same level of
detail. For example, business rules written using a business rule
template would group with the sequential or conversation format
use case and a fully attributed data model.

● Deliver these groups in chunks, or iterations, verifying each
iteration with your development team or users in use-case reviews,
walkthroughs, or prototype walkthroughs before beginning the next
iteration.

This approach lets you correct requirements and adjust the process itself
as you develop the requirements.

Figure 1: Iteratively Delivering Detailed Use-Case and Related Requirements
Models

Figure 1 shows an example of a top-down path through your user
requirements. I find that three or four iterations works best, so this one
shows four iterations.

1. In Iteration 1, you discover use cases (and name them well!) and
related scope-level requirements.

2. In Iteration 2, you define the use-case header and write a one-
paragraph description of each use case. You also list the physical
locations of the actors, associated business policies, and a high-
level domain model (class model or data entities).

3. In Iteration 3, participants create a use-case map, which shows the
sequence of use-case execution. At this point, you understand
enough about the requirements to logically group the use cases into
packages, forming cohesive use-case sets. These sets, in turn,
should be prioritized and used to define releases or increments for
delivery.

4. Finally, in Iteration 4, you rework the use cases by listing their
steps, defining the business rules associated with each step, naming
the data attributes needed by the steps and their rules, and
sketching user interface prototypes for each use case.

For one use case, this set of iterations can take minutes to hours to
define, depending on the use case's complexity and the knowledge of the
people doing the work. To keep your momentum going, decide ahead of
time how you will reach closure on the each iteration, and bite off the
most important use cases first.

Creating a high-level, first-cut set of use cases can often give you enough

information to prioritize user requirements. You can then elaborate on only
the most important use cases -- or those that are most unclear and
therefore pose special risks. In the end, this can help you avoid
requirements scope creep and optimize the time you devote to
requirements development by spending it wisely on use cases that matter.
It also enables you to avoid rework that might result from going down the
wrong path.

Compiling a survey of use cases before you detail them is particularly
helpful if you have a large project with multiple teams working
concurrently on the system. The teams should work through the use case
and related requirements at roughly the same level of precision,
periodically regrouping to review each other's requirements to find shared
requirements and avoid duplication of effort.

Calibrate the level of desired detail for use cases according to the project's
needs. Alistair Cockburn3 aptly points out that more correct and complete
documentation is necessary on projects with a large number of team
members producing mission-critical software with nondiscretionary funds.
Factors to consider when deciding how detailed to go include:

● Project size (the number of people who have to be coordinated).

● Criticality of the software (human lives or simply human comfort at
stake).

● Project priorities (Are the funds at stake essential or
discretionary?).

● Project velocity (Are you driven by time as opposed to cost or
functional scope?).

● Project team's familiarity with the problem domain.

● Project team's familiarity with use cases.

If the developers really know the domain and speed is of the essence,
then a set of use-case names each with three to six sentences each will
do. On the other hand, software governing such systems as airline cockpit
controls, missile guidance, or human clinical trials must be precise and
well documented. Decide how much detail you need and plan your
iterations accordingly.

Finally, here's the last common mistake.

10. Don't Validate or Verify Your Use Cases.

Validation involves checking your use case for necessity, to ensure that
your project is delivering the right functionality. Crosscheck each use case
to be sure it satisfies one or more elements of your project vision or goals
and objectives. Verification involves testing your use cases for correctness,
completeness, clarity, and consistency, to ensure that you created the
right thing. By "testing" I don't mean doing something on a computer after
you write test scripts and build test data. Instead, you should challenge
your use cases using other requirements models, such as scenarios, or by

using walkthroughs and reviews. Be sure to involve testers and quality
analysts throughout requirements elicitation.

Scenarios are one of the most effective ways to test (and elicit) use cases.
As you iterate through your use cases, try to test them with scenarios that
business users have generated. Walk through each use case, beginning
with the happy case (ideal) scenarios. Then move on to the unhappy case
(error and exception) scenarios involving business rules violations.

In one project, we conducted several such one- to two-hour customer
walkthroughs of use cases during requirements development. Because we
didn't want to bog down this larger group with detailed use-case text, we
walked through the scenarios using rough screen shots of the interaction
flow. Participants had created the scenarios earlier, in short meetings with
the primary subject matter expert, who was also a team member. Another
team member adjusted the use-case text, business rules list, and domain
model, as our lead designer walked through the scenario-driven prototype
screens.

On another project, the project team generated test cases at the same
time as use cases. The final use-case workshop then became a
walkthrough session, in which participants led each test case through the
use cases to see if the system functionality met expectations.

Another approach to validation is peer reviews: short meetings that focus
on a work product, such as a set of use cases and related requirements
models, to improve it and remove errors.4 For these sessions to be
successful, reviewers must prepare by individually checking the work
product beforehand. Give them quality assurance (QA) checklists or
questions that might help them find errors. For example:

● For each event in our event table and context diagram, is there at
least one associated use case?

● Which use case handles each scenario?

● What states does this use case cover?

● For each use-case step, have all the business rules been defined?

● What data is needed to support those business rules?

The questions should suit the models you employ and their levels of
detail.5

A complement to peer reviews is perspective-based reviews,6 which invite
various concerned parties -- perhaps specific actors, a tester, a designer, a
help desk technician -- to examine the use cases from their unique
perspective. Testers and quality analysts should also be active participants
in your use-case modeling process. On one project, our test lead used our
use-case templates as the basis for developing and documenting test
cases. During our modeling sessions, he asked questions that helped us
uncover missing data attributes and business rules. Involving testers and
QA experts encourages a "test first" approach to requirements
development, which yields higher quality requirements from the start.

Finally, do your best to get business experts to participate in your
walkthroughs and reviews. In their absence, surrogate users, such as
product development managers or business-savvy developers, can role-
play being end-users and uncover important defects.

Using any or all of these verification techniques will help you find errors in
your requirements that you might otherwise detect much later -- when
they cost much more to correct.

The Case for Use Cases

Use cases are a wonderful way to define behavioral requirements for your
software. In your zest to use them, however, don't fall into the trap of
turning them into abuse cases. If you're guilty of following any of my ten
"misguided guidelines," then it's time to reform your process and make
your requirements effort more efficient and productive.

Here are some specific actions you can take:

● Use multiple models to represent requirements, and trace each to
the other to maintain associations.

● Create strongly named use cases,7 and don't rely solely on use-case
diagramming elements to describe the use case (see Table 1).

● Proactively specify business rules as distinct requirements
associated with your use cases, and keep nonfunctional
requirements and GUI constructs out of your use-case text.

● Find ways to engage users in developing use cases and plan your
time with them. Begin with draft requirements models and pose
focus questions to see how well the models match users' actual
requirements.

● Plan and follow an iterative use-case development process,
beginning with rough-cut use cases. Prioritize the use cases as you
go.

● Verify that each use case really belongs within your project scope.
Continue to use checklists and conduct periodic reviews with users
and project team members to verify that each use case is still
necessary. Carefully control the scope of valid use cases.

The time you spent on developing and managing requirements and use
cases is just a small part of your overall development effort, yet it can
have a huge impact on the quality of your end product. By working to
transform your habitual mistakes into positive actions, you can make your
use cases a powerful means for delivering what your user community
really needs.

Acknowledgments

I would like to thank the following reviewers for their helpful comments
and suggestions: Alistair Cockburn, Gary Evans, Susan Lilly, Bill Nazzaro,

Paul Reed, Debra Schratz, Karl Wiegers, and Rebecca Wirfs-Brock.

References

Alistair Cockburn, "Use Cases, Ten Years Later." Software Testing and Quality Engineering
Magazine (STQE), vol. 4, No.2, March/April 2002, pp. 37-40.

Alistair Cockburn, Agile Software Development. Addison-Wesley, 2002.

Alistair Cockburn, Writing Effective Use Cases. Addison-Wesley, 2000.

Alistair Cockburn, "Using Goal-Based Use Cases." Journal of Object-Oriented Programming,
November/December 1997, pp. 56-62.

Martin Fowler, "Use and Abuse Cases." Distributed Computing, April 1998.

Ellen Gottesdiener, Requirements by Collaboration: Workshops for Defining Needs. Addison-
Wesley, 2002.

Ellen Gottesdiener, "Collaborate for Quality: Using Collaborative Workshops to Determine
Requirements." Software Testing and Quality Engineering, vol. 3, no 2, March/April 2001.

Ellen Gottesdiener, Requirements Modeling with Use Cases and Business Rules (course
materials, EBG Consulting, Inc., 2002).

Daryl Kulak and Eamonn Guiney, Use Cases: Requirements in Context. Addison-Wesley,
2000.

Susan Lilly, "How to Avoid Use-Case Pitfalls." Software Development Magazine, January
2000.

Forrest Schull, Ioana Rus, and Victor Basili, "How Perspective-Based Reading Can Improve
Requirements Inspections." IEEE Computer, 2000, vol.33, no. 7, pp.73-39.

Karl Wiegers, Peer Reviews in Software: A Practical Guide. Addison-Wesley, 2002.

Rebecca Wirfs-Brock and Alan McKean, "The Art of Writing Use Cases." (Tutorial), OOPSLA
Conference, 2001. See http://www.wirfs-brock.com/pages/resources.html.

Notes

1 For a comprehensive list of focus questions you can ask to elicit a requirements model by
starting with an existing model, see the requirements workshop asset titled "Focus Questions
for Modeling Tasks " on my Web site: http://www.ebgconsulting.com/reqtsbycollab.html.

2 See: http://www.ebgconsulting.com/publications.html, section "Use Cases" for an example.

3 See Alistair Cockburn, Agile Software Development. Addison-Wesley, 2002.

4 See Karl Wiegers, Peer Reviews in Software: A Practical Guide. Addison-Wesley, 2002.

5 For a more complete list of questions, see "QA Checklist for Checking the 'Doneness' of
Requirements Models" on my Web site: http://www.ebgconsulting.com/ReqtsByCollab.html

6 See Forrest Schull, Ioana Rus, and Victor Basili, "How Perspective-Based Reading Can
Improve Requirements Inspections," IEEE Computer, 2000, vol.33, no. 7, pp. 73-79.

7 See "Misguided Guideline #2" in the list above, the use-case naming guidelines in Part I of
this series, published in the June 2002 issue of The Rational Edge
(http://www.therationaledge.com/content/jun_02/t_misuseUseCases_eg.jsp) and also Leslee
Probasco's advice in the March 2001 issue of The Rational Edge
(http://www.therationaledge.com/content/mar_01/t_drusecase_lp.html).

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.
Thank you!

Copyright Rational Software 2002 | Privacy/Legal Information

