
14 BETTER SOFTWARE JULY/AUGUST 2009 www.StickyMinds.com

Inside Analysis

How Agile Practices Reduce
Requirements Risk
by Ellen Gottesdiener

Every software project carries some risk,
but many of these risks can be miti-
gated. That’s true of problems related
to product requirements—problems that
are often cited as one of highest risks for
any type of software project. Whether it
is having unclear requirements, lack of
customer involvement in requirements
development, or defective requirements,
these troubles are a major culprit in
projects that go awry.

Project teams can make a difference
by adopting and implementing agile
practices. When implemented correctly,
agile practices greatly mitigate the most
common risks associated with require-
ments on software development projects.
Adapting the requirements risks I discuss
in my book The Software Requirements
Memory Jogger [1], I will explain how
agile practices act to mitigate the risks—
and, therefore, provide the business
value for which these practices aim.

Risk 1: Unrealistic
Customer Expectations and
Developer Gold-Plating

This is the risk that your customer’s
wishes will exceed what your team can
deliver or that developers—in their sin-
cere quest to satisfy their customers—
will add unnecessary features.

How does agile address these prob-
lems? In agile projects, we chop up
delivery expectations into short itera-
tions—one- to three-week timeboxes.
Each timebox begins with an iteration
planning workshop in which the cus-
tomer decides which work should be
delivered.

The process is entirely transparent:
1. The customer states the goal or

theme for the iteration.
2. The delivery team members state

how much time they have to de-
vote to the effort (i.e., their ca-
pacity, usually in work hours).

3. The customer selects the highest-
priority requirements from the

backlog (the master catalog of
work needed to build the product).

4. The desired requirements are fur-
ther discussed and elaborated on,
as needed.

5. The team estimates and tasks out
the work.

6. The team and the customer ex-
plore risks and dependences.

7. The team makes an explicit com-
mitment about which require-
ments will be delivered.

As an analyst and coach, I find that the
key to this process is having each work
item (also called a story) small and sharply
defined. If you don’t know the completion
criteria up front—to assess whether a re-
quirement is “done”—then the customer’s
expectations might be dashed or delivery
team members might make (wrong) as-
sumptions and add extras.

Throughout the iteration, the team
checks on expectations by showing com-
pleted stories to the customer. At the com-
pletion of each iteration, team members
show any stakeholders all the completed
work in a demonstration and review.

Risk 2: Insufficient
Customer Involvement

The most commonly cited project risk
is a lack of engagement by customers.
A precondition on agile projects is that
we require the customer to participate
throughout each iteration. As just de-
scribed, the customer declares the itera-
tion goal and work at the start, reviews
completed work during the iteration,
and attends the demo or review at the
close of every iteration. In addition, the
customer must always be available to
answer questions about requirements.

When customers are less available,
then domain-knowledgeable business
analysts act as proxy customers to help
with requirements analysis. Thus, busi-
ness analysts become customers; they are
delegated the decision-making authority

about requirements priorities. In other
cases, I have seen business analysts act as
coaches and aides to customers, helping
them define concise and clear require-
ments, prune the ever-changing product
backlog, analyze backlog items to pre-
pare the team for the iteration planning
workshop, and document requirements.

No matter who assumes the customer
role, it is front and center on an agile
project.

Senior-level customer involvement is
also crucial, particularly on large, com-
plex projects. These executives set the
context for the product development
effort by participating in product road-
mapping to define the product vision
and lay out which features will be de-
livered over time based on market and
technology needs and constraints.

Risk 3: Poor Impact
Analysis

It is rare to encounter products
with fixed, clear requirements up front.
Changes to requirements and shifting
priorities can affect the sequence of
work, introduce unforeseen rework, or
create product defects.

Poor impact analysis involves not
understanding the ways that new and
evolving requirements affect the set of
proposed requirements that make up the
baseline (the traditional requirements
term) or backlog (the agile term).

On agile projects, it’s OK to change
the backlog. Indeed, some teams agree

IS
TO

CK
PH

O
TO

 www.StickyMinds.com JULY/AUGUST 2009 BETTER SOFTWARE 15

that any team member can revise the
backlog at any time. Other teams allow
only the customer or the business analyst
to modify the backlog. Whichever ar-
rangement the team agrees to, the point
is that team members recognize that the
backlog of work is dynamic.

The product backlog is continually
analyzed and adjusted. The customer,
often with an analyst and perhaps other
team members, prunes the backlog.
When pruning, impact analysis is key:
Items are broken down, analyzed for
their interdependences, shifted up or
down in priority, re-estimated, removed,
and reallocated to iterations or releases.
This happens weekly on most agile
teams. Analyzing the impact of changing
requirements is part of the rhythm of
successful agile teams.

Risk 4: Scope Creep
The uncontrolled expansion of re-

quirements throughout the project is the
highest risk of any software project [2].
In addition, the larger the product, the
more requirements grow. Yet, scope creep
might actually be considered “normal.”

Most software products present a
wicked dilemma: The problem you are
trying to solve is not fully understood
until after it has been solved (i.e., some
of the solution space lies within the
problem space) [3]. If you cannot know
what the solution is until you start to
build the product, you benefit by starting
to build it in small increments and then
obtaining feedback to learn and adapt.
This is the essence of agile development.

Some stability is, of course, necessary.
Product goals, objectives, target market
and users, and a product vision need to
be articulated (agile teams do this as part
of product and release planning).

It’s OK to add new items or stories
to the backlog as they arise. Agile teams
manage scope creep by continually
pruning the backlog.

The project’s scope is defined at a
high level but is not a binding contract.
By working in short delivery cycles on a
small subset of requirements, agile teams
can better control scope. Every one to
three months, they conduct release plan-
ning to adapt the requirements delivery
plan over a longer time frame.

Risk 5: Defective
Requirements

Requirements defects include missing,
erroneous, conflicting, or ambiguous re-
quirements, which can lead to a defec-
tive product. Even worse, it can lead to
building the wrong product. On an agile
project, small, concise requirements (sto-
ries) are sharply defined once the cus-
tomer has chosen them from the backlog.
Defining story “doneness” is essential. As
mentioned earlier, the customer partici-
pates in iteration planning and is avail-
able throughout each iteration to answer
requirements-related questions.

That leaves no wait time during which
developers or testers make (wrong) as-
sumptions about requirements. In addi-
tion, I like to have the team develop user
acceptance tests as soon as work begins
on each item. This form of validation is
the best way to remove ambiguity from
requirements.

A requirements defect also leads to
excessive rework—revised code, addi-
tional testing, modified documentation,
and premature or unnecessary analysis.
On agile projects, we do not analyze
backlog items until they move to the
top of the backlog stack—when they are
about to be pulled into an iteration plan-
ning workshop. This practice not only
prevents us from analyzing requirements
that will never be implemented but it
also avoids rework caused by analyzing
requirements prematurely. Additionally,
many requirements are interdependent.
When you analyze, build, test, and de-
liver a requirement, you learn things that
will impact your understanding of re-
lated requirements. By waiting until the
“last responsible moment” to conduct
analysis, you are better informed and
can tackle your analysis more efficiently.

Risk 6: New Processes and
Tools

How do agile teams reduce the risks
associated with using new requirements
practices and tools? How do teams
mitigate the normal risks of any change?
They minimize these risks through feed-
back, metrics, and coaching.

Each day, the team shares feedback
via a standup meeting. In that fifteen
minutes, team members state what they

Inside Analysis

did yesterday, what they plan to do
today, and what (if any) impediments
they are experiencing. The team also
gets customer feedback by showing its
customers completed stories as soon as
they are finished. The other key feed-
back mechanism is iteration retrospec-
tives, sessions during which team mem-
bers review self-correcting feedback and
identify small, focused adjustments that
will help them better integrate changing
work practices.

A key metric for agile teams is the
burn down chart, showing the rate at
which stories or tasks are being com-
pleted, measured in hours per day. See
this issue’s “Getting the Most Out of
Burn Charts” for more information.

Real Risk Reduction
Myths abound about how agile prac-

tices ignore or avoid good requirements
practices and can increase requirements
risks. In reality, agile done right de-
creases common requirements-related
risks. Adapting agile practices can en-
able the team to act in rhythm with the
dynamic nature of requirements develop-
ment and facilitate the delivery of “solu-
tions that meet business needs, goals, or
objectives” [4]. {end}

RefeRences
[1] Gottesdiener, Ellen. The Software Require-
ments Memory Jogger: A Pocket Guide to Help
Software and Business Teams Develop and
Manage Requirements. GOAL/QPC, 2005.
[2] Jones, Capers. “Social and Technical Rea-
sons for Software Project Failure.” CrossTalk,
June 2006, pp. 4-9.
[3] DeGrace, Peter and Leslie Hulet Stahl.
Wicked Problems, Righteous Solutions: A
Catalogue of Modern Software Engineering
Paradigms. PTR Prentice Hall, 1990.
[4] International Institute of Business Analysis.
A Guide to the Business Analysis Body of
Knowledge, version 2.0, 2009.

How do you balance agile’s
imperative to define small,

concise requirements in each
iteration with the need to have a

larger view of the entire product’s
requirements?

Follow the link on the StickyMinds.com
homepage to join the conversation.

