
Process & TechniquesProcess & Techniques

Collaborate

Qualityfor

Using workshops to determine your

project’s requirements by Ellen Gottesdiener

Just how important is it to fully develop your
project’s requirements? After all, nailing
down your requirements is usually only 8%
to 15% of your overall project effort. Truth
be told, it’s not really something you’ll want
to spend your resources and energy on—un-
less, that is, you care at all about the quality
of your product, your customers’ level of sat-
isfaction, and the amount of post-implemen-
tation repair you’ll have to take care of down
the road.

Why is it so important to get requirements right? For one
thing, you’re likely to introduce more defects into your software
product in the requirements phase than in any other phase—and
these defects account for as much as half of the product’s total de-
fects. Defects in requirements are harder to remove than defects
originating in any other phase. But that’s not all. Fixing them later

QUICK LOOK

■ The benefits of requirements
workshops

■ Applying proven patterns for
effective collaboration

■ Examples from successful efforts

www.s tqemagaz ine .com  STQE March/Apr i l  2001
1

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/


in the project will cost you more, too—
as much as 100 times more after im-
plementation than if you detected and
corrected them in the requirements
phase. It’s no wonder that rework due
to requirements defects can eat up as
much as 50% of your overall budget.

One other aspect of low-quality
requirements is harder to measure,
but just as treacherous. It’s called
“scope creep,” and it’s often cited as
the most vexing problem in software
development. Unrestrained by care-
fully developed requirements and mu-
tual IT-customer or product develop-
ment agreement, the scope of the
project keeps creeping—expanding as
the work proceeds.

For all these reasons, project
teams are searching for ways to devel-
op requirements that are as free from
defects as possible. One way to devel-
op high-quality requirements is based
on the use of collaborative workshops
along with walkthroughs and QA
checklists. As this article will illus-
trate, that combination of best prac-
tices gives you a powerful and effi-
cient way to deliver quality user
requirements—and, by extension,
quality software products.

What Makes
Workshops Work?
In collaborative workshops, partici-
pants share a common goal, and they
agree to join together to create work
products in the pursuit of that shared
goal. Workshop participants, some-
times called a task group, are pro-
ductive because collectively they have
the right mix of skills and knowledge
to create the work products. Members
of the task group act interdependent-
ly, relying on one other’s knowledge,
experience, skills, and perspectives.
They are cohesive, meaning that they
are motivated to act together. With
appropriate direction, such a group
can be highly productive.

If you’re familiar with the
acronym JAD (joint application de-
sign), then you’re already familiar with
one type of collaborative workshop.
JAD workshops are structured events
in which a carefully selected group of
stakeholders and content experts
works together to create, correct, and
document a predefined deliverable,
or work product. The group agrees
ahead of time on the deliverables, and
the participants often produce some
of them before the workshop; this sort
of timeboxing enables the group to fo-
cus on what’s really important. The
most successful workshops are com-
posed of a healthy mix of business ex-
perts (or product development people
representing those experts) and IT
people, led by a neutral facilitator and
a scribe who documents the group’s
work as it proceeds.

How are JADs and other collabo-
rative workshops different from other
kinds of business meetings? 

On the surface, collaborative
workshops are like “meetings” in that
both types of gatherings involve peo-
ple meeting together at the same
time, and both (presumably) follow a
logical flow. But there are significant
differences. Among them is the pres-
ence of two people who fulfill two
specific process roles: facilitator and
scribe. The facilitator is responsible
for managing the group’s activities,
dynamics, and work products. The
scribe documents the group’s work
as it proceeds. Neither facilitator nor
scribe operates as a content expert;
nor does either collaborate in product
creation. As a result, they are free to
focus on the process. As the group be-
comes more familiar with the process,
the facilitator’s role in controlling the
process can be relaxed.

Another important difference be-
tween a workshop and a meeting is that
a workshop is authorized by a sponsor,
who ensures that the right participants
are present, verifies the workshop’s

purpose, and ensures that the work-
shop outcomes are implemented.

In effective collaborative groups,
energy is high, individuals respect one
another, skills are complementary,
and responsibilities and roles are
clear both inside and outside the
group setting. To maintain energy,
creativity, and motivation, the facilita-
tor uses interactive as well as parallel
group activities. For example, in a
user requirements workshop, sub-
groups can be formed to work on por-
tions of a single deliverable, such as
business rules. Alternatively, sub-
groups might be assigned to work on
entire work products—one group may
work on use cases while another
drafts a prototype and yet another
creates a high-level class model. The
subgroups then reconvene in a ple-
nary (whole group) activity to share
and critique their work.

The process works. Collaborative
workshops have proven to be remark-
ably successful as a means to reduce
risk, enhance quality, and increase
productivity. They can reduce require-
ments creep by almost half. But that’s
only a few of their benefits. They can
also

■ commit users to the requirements definition
process

■ promote ownership for the deliverables and,
ultimately, the system

■ shorten the requirements phase

■ eliminate nonessential requirements

■ form or reinforce effective communication
patterns

■ build trust among project participants

By actively involving users in elicit-
ing and testing requirements, suc-
cessful workshops help you reduce
defects in requirements—and en-

Workshop participants, sometimes called a task group, are productive

because collectively they have the right mix of skills and knowledge to

create the work products. Members of the task group act interdependently,

relying on one other’s knowledge, experience, skills, and perspectives.

March/Apr i l  2001  STQE www.s tqemagaz ine .com
2

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/


hance team communications along
the way.

If you’ve ever experienced a
poorly run meeting or workshop, you
know how unproductive and negative
an experience that can be. Successful
ones, on the other hand, have a dif-
ferent feeling and definite flow. How
can you learn from these successes,
and reproduce them for your require-
ments workshops? One way, dis-
cussed next, is to apply proven “pat-
terns” for effective collaborative
work.

Collaboration Patterns
A pattern describes a known solution
to a specific type of problem, docu-
menting core insights or instructive
information. A pattern is a best prac-
tice that can be applied in new, simi-
lar situations. Our software commu-
nity has used patterns to solve
problems related to software analy-
sis, architecture, and design. More re-
cently, patterns have been document-
ed and applied to software
development processes and organiza-
tions. 

Similarly, collaboration pat-
terns are recurring activities used
successfully by collaborating groups.
They are high-level blueprints for the
behavior that these groups undertake
to accomplish results together. When
groups collaborate in a facilitated
workshop setting, the facilitator often
establishes the collaboration pat-
terns. With experience, the group
learns to incorporate these patterns,
reducing the need for the third-party
facilitator. 

“Divide, Conquer, Correct, Col-
lect” (see Table 1,) is one pattern that
groups can use to elicit and test a re-
quirement deliverable in a group. If
you were applying this to a use case,
the first step—dividing the use case—

would be to partition it into its compo-
nent parts, such as its name, header in-
formation, a brief description, a step-
wise description, and exceptions. To
conquer use cases in workshops in
large groups (seven or more partici-
pants), each subteam focuses on one
part of a single use case. Alternatively,
multiple subteams can conquer differ-
ent use cases at the same time and
then reconvene for the next step. 

In the correct part of the collabo-
ration pattern, you test the use cases

with other requirements, such as sce-
narios and business rules, and a QA
checklist. Next, you collect all the
parts of a use case along with all the
use cases for the release. These, too,
are tested as a whole. This final testing
can be driven by scenarios and a use
case navigation diagram (a visual dia-
gram showing the relationships among
all the use cases).

In the “Divide, Conquer, Cor-
rect, Collect” pattern, the group fol-
lows these general steps:

The facilitator is responsible for managing the group’s activities,

dynamics, and work products. The scribe documents the group’s work 

as it proceeds. Neither facilitator nor scribe operates as a content expert;

nor does either collaborate in product creation. As a result, they are free 

to focus on the process.

www.s tqemagaz ine .com  STQE March/Apr i l  2001
3

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

Name Divide, Conquer, Correct, Collect

Context A complex product needs to be created quickly by people with
differing expertise. Individuals need to be familiar with the content to
reduce the learning curve later in the project.

Problem How do you make sure all participants have input and verify the
product? How do you permit participants to work on aspects of a
product with which they are familiar and also aspects with which they
are unfamiliar?

Solution Divide—partition each product into component parts and categorize
them
Divide—map out the relationships between the parts into logical
order, ensuring that concurrency as well as dependency is present
Conquer—allocate partitions to subgroups with expertise in that
category of the product
Correct—conduct whole group QA activities 
Collect—synchronize the product elements

Consequences Closure on decisions; since participants have created the end product
by portioning it, working in parallel, and sharing details of each
partition, greater in-depth knowledge of product is obtained.

Entry Criteria ■ Shared time and space of knowledgeable participants
■ Ability to subdivide participants by deliverable or by experience
■ Ability to logically partition the deliverable
■ List of quality criteria for each deliverable 
■ Active involvement of knowledgeable users

Exit Criteria Creation of the end product that is agreed upon by all participants
and to which all participants have had input in both creation and
quality checking

Uses Statement of business goals and objectives, creation of context-level
use case, use case text, business rules, state chart diagram, project
plan, migration strategy, communication plan, actor catalog

TABLE 1 The Divide, Conquer, Correct, Collect collaboration pattern

http://www.stqemagazine.com/


1. Define all the necessary deliv-
erables

2. Determine the parts or compo-
nents of each deliverable

3. Define quality criteria for each
part

4. Devise questions for each part
that will test its quality

5. Define related deliverables that
can be used to test the part

6. Repeat steps 1–5 for all deliver-
ables in a set (such as all re-
quirements deliverables)

7. Arrange all parts into a logical
sequence

8. Ensure that all parts to be de-
fined concurrently are at the
same level of detail

9. Define where and
how all the docu-
mentation will be
stored and kept up-
to-date

10. Design groups of
workshop activi-
ties from the logi-
cal sequence of
parts

11. Define focus ques-
tions to lead the
group into creat-
ing the parts

12. Design specific
group processes
for each activity

13. Lead the group
through the pat-
tern, continually
checking for qual-
ity, common level
of detail, and the
view of the whole

14. Test the whole

In this way, you can use
collaborative workshops
to develop high-quality
user requirements (see

Figure 1). For your deliverables, you
can choose from a number of repre-
sentations—text, use cases, data
models, business rules, events, sce-
narios, prototypes, scenarios, and
dynamic models—instead of or in
addition to use cases. To maximize
productivity, I recommend using a
combination of text and diagrams to
represent requirements. 

If you’re keen on trying collabo-
rative workshops, keep reading for
an example of one successful work-
shop.

Workshop Walkthrough
In a two-day requirements workshop I
recently facilitated, we applied Jerry
Weinberg’s concept of “egoless pro-
gramming” to requirements. Wein-
berg’s idea, cited in his 1971 book
The Psychology of Computer Pro-
gramming (reissued as a Silver An-
niversary edition by Dorset House in
1998), was for participants to turn

away from being defensive about their
work products, focusing instead on
the quality of the work. By “restructur-
ing the social environment”—using
peers to objectively evaluate the
work—it’s possible, Weinberg argues,
to find not only defects but ways to im-
prove the product. Because my group
placed a high priority on quality re-
quirements, the team members were
interested in implementing this con-
cept. To do that, we used walk-
throughs.

In a walkthrough, a producer—
the person who created the product—
describes the product and steps
through its contents while the team
jointly takes responsibility for evaluat-
ing its quality. In addition to learning
from our own and each other’s mis-
takes, an added benefit of using walk-
throughs is that we tend to do a better
job of creating the product in the first
place. 

Before the workshop, the team
had decided that use cases would be

March/Apr i l  2001  STQE www.s tqemagaz ine .com
4

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

D E L I V E R A B L E S

■ Context diagram
■ Users classes
■ User inclusion strategy
■ Event table
■ Use case names
■ Actor catalog and hierarchy
■ Policies
■ Business scenarios
■ Glossary, first cut, business

terms

■ Use cases (detailed)
■ Business rules
■ Prototypes
■ User scenarios
■ Domain model
■ Domain state model (if needed)
■ Business changes

■ Prioritized use cases
■ Use case packages
■ Release schedule
■ User training plan
■ Business change plan

N U M B E R  L E N G T H  
O F O F  E A C H

W O R K S H O P S W O R K S H O P

1–3 1 to 2 days

1–4 2 to 4 days

1–2 1⁄2 to 11⁄2 days

FIGURE 1 Collaborative user requirements workshops

Note: Some user requirements deliverables are created outside workshops (e.g., the glossary and
nonfunctional requirements). As pre-work to each workshop, drafts of some of the deliverables are created.

Prioritization

Definition

Scope

F
IG

U
R

E
 C

O
P

Y
R

IG
H

T
 ©

2
0

0
1

 B
Y

 E
L

L
E

N
 G

O
T

T
E

S
D

IE
N

E
R

http://www.stqemagazine.com/


a good way to represent user re-
quirements. (A use case is a func-
tional requirements model that de-
fines a specific use of the system
and can be represented in a dia-
gram, in a text specification, or
both.) They had specified and docu-
mented a list of potential use case
names and a set of scenarios. (Sce-
narios are descriptions of the sys-
tem in action, including sample data,
used to create test cases and, later,
test scripts.) The group also drafted
a glossary of terms, and the team’s
GUI designer created a set of screen
mockups for each of the potential
use cases.

At the workshop, participants
created detailed use cases and wrote
business rules. As they specified the

use case steps, our scribe recorded
them using a laptop. They were also
posted on the wall in sequence, left
to right, on big blue adhesive notes.
Beneath each use case was a list of
business rules. The team then used
the scenarios to walk through each
use case along with its associated
business rules and the prototype
screens.

Here’s how it worked. Sarah, a
business expert, played the role of a
user. She selected a scenario and
then walked through a use case post-
ed on the wall, step by step. At the
same time, Dave, the GUI designer,
was poised at the overhead projector
with a pile of prototype screens on
acetates. Using an erasable colored
pen, he wrote data from the scenar-

ios on the acetate as Sarah walked
through the steps. He not only modi-
fied the data on the screen shots but
also rearranged and redrew rough
screen shots to give Sarah the inter-
face she expected to see at that
point in the scenario. 

We first worked through the
“normal” flow of a use case. As we
tested the use case with the data
provided from each scenario, I
would ask a question such as, “How
do you decide which…?” or “How
does the system select…?” or “What
does the system have to know to...?”
and so on. These questions were de-
signed to test the business rules.
When the group realized that a busi-
ness rule was incomplete or unclear,
the scribe recorded the revision un-

www.s tqemagaz ine .com  STQE March/Apr i l  2001
5

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

Maître d’s take note. You may want to seat Becky Winant’s

collaborative lunch teams at a table with a flip chart if you

want to preserve your pristine tablecloths; more often than not,

she’s got a magic marker in her hand, busy sketching out context

diagrams and product features.

Technology, she says, provides amazing tools for communi-

cation and modeling—two of her specialties—but sometimes

low-tech pen and paper is the best bet for helping people collabo-

rate. Winant has been involved in software development for thirty

years, twenty of those spent building analysis and design models

and conducting workshops. “Sometimes just sketching a product

or a feature on paper jump-starts the conversation,” she says.

“I’ve learned that people can’t really go anywhere with a model

unless you start at the very beginning—having some interaction

with all the people involved in the project, who have some stake

in it, to decide what they want to do with it.”

Winant has found her early-stage collaborative workshops

to be an ideal place to nurture basic understandings. “When I’m

facilitating meetings with engineers on embedded products, I’ll

get them talking about a piece of equipment they’re going to have

to write operating software for,” she says. “Something they’re

trying to wrap their minds around and understand the require-

ments for. Drawing a picture of it helps them understand the

functions and components and gives them a chance to say, ‘Hey, I

guess I really don’t know what happens there.’”

That kind of realization, she says, is what you want to hap-

pen during collaborative workshops—not halfway through devel-

opment when you’ve already built in another direction, or worse,

six months later when the product has shipped.

Basic face-to-face talking is key. “There’s an unfortunate

habit in software today,” Winant notes, “to buy tools to make a

system appear.” Modeling tools are getting better and better, to

the point that you can sit down in a room by yourself and build

detailed and concise models that tie in to your final system. While

those kinds of templates and automation are great, she stresses

that they fall short of addressing the really hard problems in proj-

ect teams: making sure everyone’s communicating clearly about

requirements and expectations. “The collaborative stuff,” she

points out, “is where everyone at the table gains deeper under-

standing of what you’re doing, what targets you want to achieve,

and how things will be different—better—when you’re done.”

—A.W.

PERSPECTIVE

Drawing People Together

http://www.stqemagazine.com/


der the use case steps for everyone
to see.

After working through three or
four normal scenarios, we attacked
the exceptions: those scenarios that
would occur less often or those that
would cause errors. We had posted
the use case steps that had excep-
tions using different-colored adhe-
sive notes. These exceptions ap-
peared as branches off the normal
use case steps. Walking through the
scenarios had already revealed that
numerous business rules were miss-
ing. As we walked through an excep-
tion scenario, sometimes the partici-
pants realized that they needed to
add another exception. These in turn
yielded more use case steps, test
data, and changes to the flow of the
prototype screens. We kept track of
the corrections on the actual mod-
els. You can also use a form to track
all the defects in one place. 

At the conclusion of each use
case’s walkthrough, we used a col-
laboration pattern I call “Decide How
to Decide” to determine the disposi-
tion of each use case. Our scribe,
working on his laptop, projected our
Use Case Completion form on the
wall. At this point, I polled the group
for input. Using a predetermined de-
cision rule, the sponsor made the fi-
nal decision. As specifics were dis-
cussed, the scribe captured notes
and the final decision on the form.
(See this article’s StickyNotes for a
sample template for use case sce-
nario testing, as well as a use case
completion form.)

QA Checklists
A second technique you can inte-
grate into collaborative require-
ments workshops is QA checklists
(see Table 2). A checklist can pro-
vide more benefits than may be im-
mediately obvious—the very process
of creating and agreeing on the
checklist helps IT and users clarify
and define expectations for each de-
liverable clearly and precisely. Like
walkthroughs, checklists push par-
ticipants to create high-quality re-
quirements in the first place. The
checklist forces you to focus on the
end from the beginning.

Using checklists is another ex-
ample of the “correct” phase of “Di-

vide, Conquer, Correct, Collect.” The
process is simple: You compare each
requirement to the checklist ques-
tions and discuss and correct any
discrepancies…right away, if feasi-
ble. 

In one workshop I facilitated, the
group created scope-level require-
ments in the forms of an event table
(naming the events that trigger the
system to act) and a context diagram
(showing what the system gives and

gets from things that interact with it).
I divided the group of fourteen people
into subgroups. Each subgroup was
given a copy of the checklist illustrat-
ed in Table 2. As a facilitator, I’ve dis-
covered that participants give you
what you ask for. My experience is that
taking a testing attitude toward deliv-
erables helps workshop participants
find more defects and find them earli-
er. So I told them, “Find ‘boo-boos’ in
what we created.”

March/Apr i l  2001  STQE www.s tqemagaz ine .com
6

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

Events

Is each business event unpredictable with respect to timing and frequency and does it
originate from outside the system?

Does the list of events include both business and temporal events?

Are temporal events in the format of “time to…”?

Are temporal events truly temporal, that is, a specific time can be identified when the event
can fire automatically?

Are business events in the format of “subject + verb + object”?

Does each event result in a response that is documented in the event table?

Are all the expected outcomes (responses) listed as responses?

Is each response listed separately?

Are responses that are custodial in nature (updating files) documented in the event table?

Is each term (noun) listed in each event also defined in the glossary?

Have out-of-scope (indirect) events been removed?

Have internal activities (internal events or actions) been removed from the event table?

Context Diagram

Does the label for the center describe the essential nature of the project’s scope?

Does each inflow correspond to one and only one business event?

Is each inflow labeled with the information or product that is passed to the system?

Is each inflow labeled at the same level of detail?

Is each inflow labeled without verbs?

Does each outflow correspond to one noncustodial response in the event table?

If not, is that response custodial in nature? (updating files, databases)

Is each noun on inflows and outflows documented in the project glossary?

Event Table and Context Diagram

Does each event correspond to a response that is documented in the event table?

Is each inflow labeled with the information or product that is passed to the system?

Is there a single inflow on the context diagram corresponding to each business event?

Is there a single outflow on the diagram corresponding to one response to an event?

Can each inflow and outflow be corresponded to a row on the event table?

TABLE 2 QA checklist

http://www.stqemagazine.com/


Design 
Your Own
Workshop:
Mind Your 
Six Ps 

T o design a workshop, you
first define what I refer to
as the “six Ps”: purpose,

participants, principles, products,
place, and process. These six ele-
ments help you build the frame-
work for a successful workshop.
They answer the questions why,
who, how, what, where, and when.

Purpose
The statement of the workshop’s
purpose outlines the reason and
justification for the workshop. It
explains why you’re conducting
the workshop and serves as a
frame of reference. 

It may seem obvious, but it’s
important to remember that a
workshop delivers work prod-
ucts that are needed by the proj-
ect. Because the workshop’s
context is the project, the work-
shop’s purpose is linked to the
project’s purpose, which de-
scribes the business reason for
undertaking the project. The
statement of the project’s pur-
pose usually references the cur-
rent business situation, the de-
sired situation, the obstacles to
achieving the desired situation,
and the changes that are desired.
Similarly, the workshop’s pur-
pose describes the business rea-
son for gathering the players to-
gether. The link must be evident
to all stakeholders. It’s hard to
overestimate the benefits of well-
defined purposes for projects
and workshops. 

Participants
The people involved in a facilitat-

7

www.s tqemagaz ine .com  STQE March/Apr i l  2001

Each subgroup indeed found de-
fects, which were shared with the
larger group and corrected. For exam-
ple, they forgot that they had to get
periodic updates from an employee
database, and they realized they
would need someone to play the role
of approving certain types of queries
to sensitive data. After that, they con-
tinued the workshop by defining de-
tailed requirements for each event in
scope.

Alternative Approaches
When should you not use collabora-
tive workshops?

First, if you can’t identify a
workshop sponsor, you won’t have
the necessary commitment to ensure
that the right players participate and
prepare for a successful session.
Second, in some organizations it is-
n’t feasible to gather together users
or their surrogates at the same time
and place. In that case, however, 
you might consider using collabora-
tive software (see this article’s
StickyNotes for information on col-
laborative software resources).

Collaborative software tools al-
low people to gather in a “different
time–different place” virtual envi-
ronment to generate, summarize,
and prioritize ideas. Be aware that
you will need a skilled facilitator
who is experienced in that software
product to chauffeur the tool for
you.

Finally, don’t use collaborative
workshops unless you have a facilita-
tor who is neutral to the outcome, ex-
perienced with group process, and
knowledgeable about the deliverables
you need to create in the session.
These skills can be developed within
your organization and shared across
projects.

In lieu of workshops, you can use
techniques such as observation, inter-
views, surveys, prototypes, competi-
tive analysis, or product complaint
data. Of course, these techniques can
be powerful in combination with work-
shops, if workshops seem to be a fit
for you. 

Risks and Payoffs
Like other approaches, workshops
come with some pitfalls. Here are

some conditions to watch out for:

■ participants don’t share a common goal

■ the sponsor and participants can’t agree
on the deliverables prior to a workshop

■ participants aren’t educated about the
purpose and format of the workshop and
the intended deliverables

■ the sponsor doesn’t budget enough time
and money to allow participants to con-
tribute to all phases of the workshop
process

■ the workshop doesn’t include people with
a healthy mix of perspectives and experi-
ence

■ you don’t have an experienced facilitator

■ your facilitator is a key stakeholder in the
outcome, and thus has difficulty being
neutral and focusing on the group process

■ project or company politics have poisoned
the players’ ability to collaborate

■ participants can’t agree on ground rules
for conducting the workshop

■ the work that gets created is not used or
acknowledged by management 

If you address these potential risks,
you’re ready to use well-run collabora-
tive workshops. Combine these work-
shop suggestions with techniques such
as walkthroughs and QA checklists.
Those methods aren’t new, but they’re
proven best practices in software devel-
opment, and work well when integrated
into the workshop process.

The payoffs can be dramatic. Even
though gathering your requirements
may seem to be a small part of the ef-
fort you devote to a project, getting
your requirements right the first time
through the use of collaborative work-
shops can have a big impact on your
quality of work—and your team’s sani-
ty. STQE

Ellen Gottesdiener, principal con-
sultant at EBG Consulting (www.
ebgconsulting.com), provides con-
sulting, facilitation, and training
to business-driven IT projects. Her
book Collaborative User Require-
ments will be published in 2001.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/


ed workshop are the workshop spon-
sor, the participants, a facilitator, a
scribe, observers, and on-call subject
matter experts. Another term often
used to describe the various people
involved in collaborative projects is
role. When you explicitly define the
individuals who are to play each role,
the group can better plan the session,
the participants are better prepared,
and the event is more likely to suc-
ceed.

Not all of these roles are neces-
sarily present during a given work-
shop. For example, the workshop
sponsor may be present only at the
beginning and end of the session.

Principles
Also called ground rules, principles
are guidelines for participation, or the
codes of conduct that participants
agree to follow. Groups need these
precepts to maintain socially accept-
able behavior and to promote the
goals of the workshop: delivering the
appropriate work products in the al-
lotted time. The principles serve as a
process guide for the facilitator as
well as the participants.

The facilitator works with the
workshop sponsor and group to es-
tablish principles, which must be
clear and acceptable to all partici-
pants. The facilitator and participants
are responsible for monitoring the ad-
herence to the principles.

Products
The work products, or deliverables, of
a workshop take the form of text or
diagrams. For user requirements
workshops, they are lists of business
policies, use case text, use case dia-
grams, atomic business rules, and the
like. These workshop deliverables, in
turn, serve as input to project activi-
ties, including design, development,
or additional workshops, such as defi-
nition or design workshops. 

To accelerate the delivery of
workshop products, the participants
need certain input products such as
draft models, text, and documenta-
tion. These materials may already ex-
ist or may need to be created before
the workshop. In one requirements
workshop, for example, I asked the
team to produce prototype screens
and a list of free-form business rules
for each of the use cases that had al-
ready been drafted. These additional
input products proved to be critical in
accelerating the delivery of higher-
quality use cases. 

Place
The location of a workshop can influ-
ence the outcome. If you’re using a
technique that requires the use of gi-
ant pieces of paper mounted on the
walls, for example, the room needs
plenty of wall space. If the room is
crowded, subteam activities might be
impossible. It’s also important that

the room has the space and amenities
you need to serve refreshments.

■ Should you hold your workshop onsite near
participants’ work areas, or offsite? It’s
good for participants to have easy access to
files, documents, and materials, but it also
means that they can get pulled away from
the workshop to deal with email, voice mail,
or peer questions.

■ In evaluating the best place to hold the
workshop, consider room size, wall space,
support for refreshments, seating (a 
U-shape arrangement is best), availability
of outlets, access to on-call subject matter
experts (via physical proximity or phones),
and access to phones during breaks and
lunch.

Process
Plan the workshop’s activities so they
follow a logical flow in which the out-
puts from one activity are used by the
next activity in the session (or in a
post-workshop project task). An activ-
ity may consist of several steps in
which members work individually, in
small teams (subteams), or as a whole
group.

To streamline the process and im-
prove the quality of deliverables, it’s a
good idea to follow a collaboration
pattern. For a list of best practices for
integrating workshops into the re-
quirements phase, see the StickyNotes
feature at the end of this article.

F O C U S P U R P O S E PA R T I C I PA N T S P R I N C I P L E S P R O D U C T S P L A C E P R O C E S S

Questions Why are we Who is involved? How should we What should Where should When should 

doing the function as a the workshop we gather and things happen, and 

workshop? group? produce? share space? in what order?

Concerns ■ Goals ■ Roles ■ Guidelines ■ Work products ■ Location ■ Steps
■ Need ■ Stakeholder ■ for participation ■ Dependencies ■ Time ■ Activities
■ Motivation ■ Experts ■ Ground rules ■ Models ■ Order

■ Group norms ■ Decisions ■ Concurrency
■ Next steps
■ Issues for 
■ resolution

Framework for Designing a Collaborative Workshop

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

March/Apr i l  2001  STQE www.s tqemagaz ine .com
9

March/Apr i l  2001 STQE www.s tqemagaz ine .com
8

http://www.stqemagazine.com/
Alison Kincaid
STQE magazine is produced by STQE Publishing, a division of Software Quality Engineering.

http://www.sqe.com/
http://www.stqemagazine.com/



